Abstract:
A technique relates to a semiconductor device. First metal contacts are formed on top of a substrate. The first metal contacts are arranged in a first direction, and the first metal contacts are arranged such that areas of the substrate remain exposed. Insulator pads are positioned at predefined locations on top of the first metal contacts, such that the insulator pads are spaced from one another. Second metal contacts are formed on top of the insulator pads, such that the second metal contacts are arranged in a second direction different from the first direction. The first and second metal contacts sandwich the insulator pads at the predefined locations. Surface-sensitive conductive channels are formed to contact the first metal contacts and the second metal contacts. Four-terminal devices are defined by the surface-sensitive conductive channels contacting a pair of the first metal contacts and contacting a pair of the metal contacts.
Abstract:
A hall effect device includes an active Hall region in a semiconductor substrate, and at least four terminal structures, each terminal structure including a switchable supply contact element and a sense contact element, wherein each supply contact element includes a transistor element with a first transistor terminal, a second transistor terminal, and a control terminal, wherein the second transistor terminal contacts the active Hall region or extends in the active Hall region; and wherein the sense contact elements are arranged in the active Hall region and neighboring to the switchable supply contact elements.
Abstract:
Provided are a magnetic sensor and a method of manufacturing the same. In the magnetic sensor and the method of manufacturing the same, a magnetic converging plate holder with a recessed pattern having the same shape and size as those of a magnetic converging plate is formed in a die pad of a package on which a semiconductor substrate having Hall elements, a circuit, and the like is to be arranged, the magnetic converging plate manufactured through processes different from those of the semiconductor substrate on which the Hall elements and the circuit are formed is inserted into the magnetic converging plate holder, and the semiconductor substrate having the Hall elements, the circuit, and the like is arranged on the resultant so that a back surface thereof faces the die pad and the magnetic converging plate.
Abstract:
In the method of manufacturing a magnetoresistive sensor module, at first a composite arrangement out of a semiconductor substrate and a metal-insulator arrangement is provided, wherein a semiconductor circuit arrangement is integrated adjacent to a main surface of the semiconductor substrate into the same, wherein the metal-insulator arrangement is arranged on the main surface of the semiconductor substrate and comprises a structured metal sheet and insulation material at least partially surrounding the structured metal sheet, wherein the structured metal sheet is electrically connected to the semiconductor circuit arrangement. Then, a magnetoresistive sensor structure is applied onto a surface of the insulation material of the composite arrangement, and finally an electrical connection between the magnetoresistive sensor structure and the structured metal sheet is established, so that the magnetoresistive sensor structure is connected to the integrated circuit arrangement.
Abstract:
A technique relates to a semiconductor device. First metal contacts are formed on top of a substrate. The first metal contacts are arranged in a first direction, and the first metal contacts are arranged such that areas of the substrate remain exposed. Insulator pads are positioned at predefined locations on top of the first metal contacts, such that the insulator pads are spaced from one another. Second metal contacts are formed on top of the insulator pads, such that the second metal contacts are arranged in a second direction different from the first direction. The first and second metal contacts sandwich the insulator pads at the predefined locations. Surface-sensitive conductive channels are formed to contact the first metal contacts and the second metal contacts. Four-terminal devices are defined by the surface-sensitive conductive channels contacting a pair of the first metal contacts and contacting a pair of the metal contacts.
Abstract:
In one embodiment, a semiconductor device includes a glass substrate, a semiconductor substrate disposed on the glass substrate, and a magnetic sensor disposed within and/or over the semiconductor substrate.
Abstract:
Methods and apparatus to provide a magnetic field sensor device including a magnetic sensor element, a die having wafer bumps, wherein the magnetic sensor element is positioned in relation to the die, and conductive leadfingers having respective portions electrically connected to the wafer bumps. In embodiments, the device includes a region about the magnetic sensor element that does not contain electrically conductive material for preventing eddy current flow.
Abstract:
Present invention includes an apparatus of and method of making a spin-transfer-torque magnetoresistive memory with three terminal magnetoresistive memory element(s) having highly conductive bottom electrodes overlaid on top of a SHE-metal layer in the regions outside of an MTJ stack. The memory cell has a bit line positioned adjacent to selected ones of the plurality of magnetoresistive memory elements to supply a reading current across the magnetoresistive element stack and two highly conductive bottom electrodes overlaid and electrically contacting on top of a SHE-metal layer in the outside of an MTJ region and to supply a bi-directional spin Hall effect recording current, and accordingly to switch the magnetization of the recording layer. Thus magnetization of a recording layer can be readily switched or reversed to the direction in accordance with a direction of a current along the SHE-metal layer by applying a low write current.
Abstract:
Provided is a highly sensitive vertical Hall element without increasing a chip area. In the vertical Hall element, trenches each filled with an insulating film are formed between a first current supply end and voltage output ends, respectively, which enables the restriction of current flow into the voltage output ends to increase the ratio of a current component perpendicular to a substrate surface, resulting in enhanced sensitivity.
Abstract:
An embodiment includes a magnetic tunnel junction (MTJ) including a free magnetic layer, a fixed magnetic layer, and a tunnel barrier between the free and fixed layers; the tunnel barrier directly contacting a first side of the free layer; and an oxide layer directly contacting a second side of the free layer; wherein the tunnel barrier includes an oxide and has a first resistance-area (RA) product and the oxide layer has a second RA product that is lower than the first RA product. The MTJ may be included in a perpendicular spin torque transfer memory. The tunnel barrier and oxide layer form a memory having high stability with an RA product not substantively higher than a less table memory having a MTJ with only a single oxide layer. Other embodiments are described herein.