Abstract:
Phosphorus-containing benzoxazine-based bisphenols and derivatives thereof are disclosed. The phosphorus-containing benzoxazine-based bisphenols are prepared by reacting DOPO with benzoxazine to form the phosphorus-containing benzoxazine-based bisphenols. The phosphorus-containing benzoxazine-based bisphenols can further to form advanced epoxy resins. The advanced epoxy resins can further be cured to form flame retardant epoxy thermosets.
Abstract:
A color liquid crystal display device includes a liquid crystal display element and a backlight unit. The liquid crystal display element includes a color filter having a red filter segment, a green filter segment, and a blue filter segment. The red filter segment is prepared from a red photosensitive resin composition which includes a pigment combination, an alkali-soluble resin, a compound having an ethylenic group, and a photoinitiator. The pigment combination includes an azo-based red pigment and an anthraquinone-based red pigment. A weight ratio of the azo-based red pigment to the anthraquinone-based red pigment ranges from 20/80 to 80/20. The backlight unit is coupled to the liquid crystal display element and has a color temperature ranging from 6,000 K to 20,000 K.
Abstract:
Disclosed is a method for making a low-k, flame-retardant, bi-functional benzoxazine. The method includes the steps of dissolving phosphoric diamine with various functional groups, phenolic adamantane and paraformaldehyde in a solvent at 72° C. to 88° C. for 7 to 9 hours, and cooling and introducing the solution in n-hexane to separate the low-k, flame-retardant, phosphoric, bi-functional benzoxazine.
Abstract:
A semiconductor device having a source feature and a drain feature formed in a substrate. The semiconductor device having a gate stack over a portion of the source feature and over a portion of the drain feature. The semiconductor device further having a first cap layer formed over substantially the entire source feature not covered by the gate stack, and a second cap layer formed over substantially the entire drain feature not covered by the gate stack. A method of forming a semiconductor device including forming a source feature and drain feature in a substrate. The method further includes forming a gate stack over a portion of the source feature and over a portion of the drain feature. The method further includes depositing a first cap layer over substantially the entire source feature not covered by the gate stack and a second cap layer over substantially the entire drain feature not covered by the gate stack.
Abstract:
A dielectric antenna includes at least one dielectric unit. Each dielectric unit is separated into a first region and a second region, and the second region could have a bending portion. A conductor covers a surface of the second region of the dielectric unit to form a waveguide structure. The waveguide structure has a first endpoint connected to the first region and a second endpoint serving as a signal feeding terminal for feeding or receiving signals.
Abstract:
A transmitting terminal includes a signal processing unit, MS RF units, MT transmit antennas and a switch unit. The signal processing unit has K precoders for precoding K data streams corresponding to K receiving terminals. The MS RF units output MS up-converted transmit signals based on the precoded K data streams. The switch unit is coupled between the RF units and the transmit antennas and controlled by the signal processing unit for selection of the transmit antennas. The signal processing unit sets the MT transmit antennas as a universal set, calculates a plurality of sum rates corresponding to a plurality of subsets, each subset excluding an ith transmit antenna, according to channel state information, selects the subset with a maximum sum rate as the universal set of a next iteration, and then repeats the calculating and selecting steps until the subset with the maximum sum rate remaining MS transmit antennas.
Abstract translation:发送终端包括信号处理单元,MS RF单元,MT发送天线和开关单元。 信号处理单元具有用于对与K个接收终端对应的K个数据流进行预编码的K个预编码器。 MS RF单元基于预编码的K个数据流输出MS上变频的发送信号。 开关单元耦合在RF单元和发射天线之间,并由信号处理单元控制,用于选择发射天线。 信号处理单元将MT发送天线设置为通用集合,根据信道状态信息,计算与多个子集对应的多个和速率,除了第i个发射天线之外的每个子集,以最大和速率选择子集作为 下一次迭代的通用集合,然后重复计算和选择步骤,直到具有最大和速率剩余MS发射天线的子集。
Abstract:
The present disclosure provides an integrated circuit design method. In an example, a method includes receiving an integrated circuit design layout that includes an active region feature, a contact feature, and an isolation feature, wherein a portion of the active region feature is disposed between the contact feature and the isolation feature; determining whether a thickness of the portion of the active region feature disposed between the contact feature and the isolation feature is less than a threshold value; and modifying the integrated circuit design layout if the thickness is less than the threshold value, wherein the modifying includes adding a supplementary active region feature adjacent to the portion of the active region feature disposed between the contact feature and the isolation feature.
Abstract:
A touch system with track detecting function includes a touch pad for sequentially sensing a plurality of positions of an indication object at a plurality of moments in order to detect a track of the indication object on the touch pad, and a processor for continuously generating motion vectors according to the track of the indication object on the touch pad, for generating a candidate motion vector according to at least one motion vector, and for nonlinearly generating a target motion vector according to the candidate motion vector in order to move a target shown on a display panel. Each of the motion vectors represents a difference between a position of the indication object and a next position of the indication object.
Abstract:
An image processing method for a display device, for enhancing image quality, includes receiving video signals, sequentially generating a plurality of image data according to the video signals, and sequentially displaying the plurality of image data on a panel of the display device. Each of the plurality of image data includes a frame data and a low-gray-level frame data respectively corresponding to a frame output duration and a vertical blanking duration in a timing sequence of the video signals.
Abstract:
A communication device and a method for enhancing impedance bandwidth of an antenna are provided. The communication device includes at least one ground, at least one antenna, a current-drawing conductor structure, and at least one coupling conductor structure. The antenna is electrically connected to the ground through a source and generates at least one operating frequency band for transmitting or receiving electromagnetic signals of at least one communication band. The current-drawing conductor structure includes a plurality of conductor elements, where there is at least one mutual coupling portion formed between neighboring conductor elements. The coupling conductor structure has a first conductor portion and a second conductor portion. One end of the first conductor portion is electrically connected to the ground, and another end thereof is electrically connected to the second conductor portion. There is at least one coupling portion formed between the second conductor portion and the current-drawing conductor structure.