Abstract:
An apparatus includes a static random-access memory and circuitry configured to initiate a corrective action associated with the static random-access memory. The corrective action may be initiated based on a number of static random-access memory cells that have a particular state responsive to a power-up of the static random-access memory.
Abstract:
Static random access memory (SRAM) bit cells with wordlines on separate metal layers for increased performance are disclosed. In one aspect, an SRAM bit cell is disclosed employing a write wordline in a second metal layer, a first read wordline in a third metal layer, and a second read wordline in a fourth metal layer. Employing wordlines in separate metal layers allows wordlines to have increased widths, which decrease wordline resistance, decrease access time, and increase performance of the SRAM bit cell. To employ wordlines in separate metal layers, multiple tracks in a first metal layer are employed. To couple read wordlines to the tracks to communicate with SRAM bit cell transistors, landing pads are disposed on corresponding tracks disposed in the first metal layer. Landing pads corresponding to the write wordline are placed on corresponding tracks disposed in the first metal layer.
Abstract:
An advanced metal-nitride-oxide-silicon (MNOS) multiple time programmable (MTP) memory is provided. In an example, an apparatus includes a two field effect transistor (2T field FET) metal-nitride-oxide-silicon (MNOS) MTP memory. The 2T field FET MNOS MTP memory can include an interlayer dielectric (ILD) oxide region that is formed on a well and separates respective gates of first and second transistors from the well. A control gate is located between the respective gates of the first and second transistors, and a silicon-nitride-oxide (SiN) region is located between a metal portion of the control gate and a portion of the ILD oxide region.
Abstract:
A device includes a static random access memory (SRAM) cell and a read buffer coupled to an output of the SRAM cell. The read buffer includes an inverter and a switch. An input of the inverter is responsive to the output of the SRAM cell. A control terminal of the switch is responsive to an output of the inverter.
Abstract:
A volatile and one-time program (OTP) compatible asymmetric memory cell may include a first pull-up transistor having a first threshold voltage. The asymmetric memory cell may also include a second pull-up transistor having a second threshold voltage that differs from the first threshold voltage. The asymmetric memory cell may further include a switch coupled to a well of the first pull-up transistor and the second pull-up transistor to alternate between a program voltage (Vpg) and a power supply voltage. The asymmetric memory cell may also include a peripheral switching circuit to control programming of the asymmetric memory cell.
Abstract:
A method of forming fins of different materials includes providing a substrate with a layer of a first material having a top surface, masking a first portion of the substrate leaving a second portion of the substrate exposed, etching a first opening at the second portion, forming a body of a second material in the opening to a level of the top surface of the layer of the first material, removing the mask, and forming fins of the first material at the first portion and forming fins of the second material at the second portion. A finFET device having fins formed of at least two different materials is also disclosed.
Abstract:
Static random access memory (SRAM) bit cells with wordlines on separate metal layers for increased performance are disclosed. In one aspect, an SRAM bit cell is disclosed employing a write wordline in a second metal layer, a first read wordline in a third metal layer, and a second read wordline in a fourth metal layer. Employing wordlines in separate metal layers allows wordlines to have increased widths, which decrease wordline resistance, decrease access time, and increase performance of the SRAM bit cell. To employ wordlines in separate metal layers, multiple tracks in a first metal layer are employed. To couple read wordlines to the tracks to communicate with SRAM bit cell transistors, landing pads are disposed on corresponding tracks disposed in the first metal layer. Landing pads corresponding to the write wordline are placed on corresponding tracks disposed in the first metal layer.
Abstract:
An apparatus includes an array of bit cells that include a first row of bit cells and a second row of bit cells. The apparatus also includes a first global read word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The apparatus further includes a second global read word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The apparatus also includes a global write word line configured to be selectively coupled to the first row of bit cells and to the second row of bit cells. The first global read word line, the second global read word line, and the global write word line are located in a common metal layer.
Abstract:
An apparatus includes a first read port, a second read port, a write port, and at least one storage latch. A width of a bit cell that includes the first read port, the second read port, and the write port is greater than twice a contacted poly pitch (CPP) associated with the bit cell. For example, a bit cell may be a 3-port static random access memory (SRAM) bit cell that is compatible with self-aligned double patterning (SADP) processes and that can be manufactured using semiconductor manufacturing processes of less than 14 nanometers (nm).
Abstract:
A static random-access memory (SRAM) memory cell includes a pair of cross-coupled inverters and a gating transistor coupled to a first node of a first inverter of the pair of cross-coupled inverters. A gate of the gating transistor is coupled to a first wordline. The gating transistor is configured to selectively couple a bitline to the first node of the first inverter responsive to a first wordline signal. The first inverter has a second node coupled to a second wordline. The first wordline and the second wordline are each independently controllable.