Abstract:
A semiconductor device includes a first magnetic tunnel junction (MTJ) device, a second MTJ device, and a top electrode. The first MTJ device includes a barrier layer. The second MTJ device includes the barrier layer. The top electrode is coupled to the first MTJ device and the second MTJ device.
Abstract:
A method for fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes growing a seed layer on a first electrode of the pMTJ device. The seed layer has a uniform predetermined crystal orientation along a growth axis. The method also includes planarizing the seed layer while maintaining the uniform predetermined crystal orientation of the seed layer.
Abstract:
An apparatus includes a capping layer disposed on top of a free layer. The apparatus also includes a magnetic etch stop layer disposed on top of the capping layer. The capping layer and the magnetic etch stop layer are included in a spin-transfer torque magnetoresistive random access memory (STT-MRAM) magnetic tunnel junction (MTJ) device.
Abstract:
One feature pertains to a method of implementing a physically unclonable function that includes providing an array of metal-insulator-metal (MIM) devices, where the MIM devices are configured to represent a first resistance state or a second resistance state and a plurality of the MIM devices are initially at the first resistance state. The MIM devices have a random breakdown voltage that is greater than a first voltage and less than a second voltage, where the breakdown voltage represents a voltage that causes the MIM devices to transition from the first resistance state to the second resistance state. The method further includes applying a signal line voltage to the MIM devices to cause a portion of the MIM devices to randomly breakdown and transition from the first resistance state to the second resistance state, the signal line voltage greater than the first voltage and less than the second voltage.
Abstract:
A perpendicular magnetic tunnel junction (MTJ) apparatus includes a tunnel magnetoresistance (TMR) enhancement buffer layer deposited between the tunnel barrier layer and the reference layers An amorphous alloy spacer is deposited between the TMR enhancement buffer layer and the reference layers to enhance TMR The amorphous alloy spacer blocks template effects of face centered cubic (fcc) oriented pinned layers and provides strong coupling between the pinned layers and the TMR enhancement buffer layer to ensure full perpendicular magnetization.
Abstract:
A memory cell includes a magnetic tunnel junction (MTJ) structure that includes a free layer coupled to a bit line and a pinned layer. A magnetic moment of the free layer is substantially parallel to a magnetic moment of the pinned layer in a first state and substantially antiparallel to the magnetic moment of the pinned layer in a second state. The pinned layer has a physical dimension to produce an offset magnetic field corresponding to a first switching current of the MTJ structure to enable switching between the first state and the second state when a first voltage is applied from the bit line to a source line coupled to an access transistor and a second switching current to enable switching between the second state and the first state when the first voltage is applied from the source line to the bit line.
Abstract:
A magnetic tunneling junction device and fabrication method is disclosed. In a particular embodiment, a non-transitory computer-readable medium includes processor executable instructions. The instructions, when executed by a processor, cause the processor to initiate deposition of a capping material on a free layer of a magnetic tunneling junction structure to form a capping layer. The instructions, when executed by the processor, cause the processor to initiate oxidization of a first layer of the capping material to form a first oxidized layer of oxidized material.
Abstract:
One feature pertains to least one physically unclonable function based on an array of magnetoresistive random-access memory (MRAM) cells. A challenge to the array of MRAM cells may identify some of the cells to be used for the physically unclonable function. Each MRAM cell may include a plurality of magnetic tunnel junctions (MTJs), where the MTJs may exhibit distinct resistances due to manufacturing or fabrication variations. A response to the challenge may be obtained for each cell by using the resistance(s) of one or both of the MTJs for a cell to obtain a value that serves as the response for that cell. The responses for a plurality of cells may be at least partially mapped to provide a unique identifier for the array. The responses generated from the array of cells may serve as a physically unclonable function that may be used to uniquely identify an electronic device.
Abstract:
In a particular embodiment, a method includes controlling a temperature within a chamber while applying a magnetic field. A device including a memory array is located in the chamber. The method includes applying a magnetic field to the memory array and testing the memory array during application of the magnetic field to the memory array at a target temperature.
Abstract:
A magnetic tunnel junction (MTJ) device for a magnetic random access memory (MRAM) includes a first conductive interconnect communicating with at least one control device and a first electrode coupling to the first conductive interconnect through a via opening formed in a dielectric passivation barrier using a first mask. The device has an MTJ stack for storing data, coupled to the first electrode. A portion of the MTJ stack has lateral dimensions based upon a second mask. The portion defined by the second mask is over the contact via. A second electrode is coupled to the MTJ stack and also has a lateral dimension defined by the second mask. The first electrode and a portion of the MTJ stack are defined by a third mask. A second conductive interconnect is coupled to the second electrode and at least one other control device.