Abstract:
An integrated circuit may include multiple back-end-of-line (BEOL) interconnect layers. The BEOL interconnect layers may include conductive lines and conductive vias. The integrated circuit may further include an interlayer dielectric (ILD) between the BEOL interconnect layers. The ILD may include the conductive lines and the conductive vias. At least a portion of the ILD may include a low-K insulating graphene alloy.
Abstract:
An integrated circuit (IC) device may include a semiconductor structure. The semiconductor structure may include a source contact, a drain contact, and a gate. A first fluorocarbon spacer may be between the gate and the source contact. A second fluorocarbon spacer may be between the gate and the drain contact.
Abstract:
A heterojunction bipolar transistor unit cell may include a compound semiconductor substrate. The heterojunction bipolar transistor unity may also include a base mesa on the compound semiconductor substrate. The base mesa may include a collector region on the compound semiconductor substrate and a base region on the collector region. The heterojunction bipolar transistor unity may further include a single emitter mesa on the base mesa.
Abstract:
Non-volatile memory devices and logic devices are fabricated using processes compatible with high dielectric constant/metal gate (HK/MG) processes for increased cell density and larger scale integration. A doped oxide layer, such as a silicon-doped hafnium oxide (HfO2) layer, is implemented as a ferroelectric dipole layer in a non-volatile memory device
Abstract:
An integrated circuit (IC) includes back-end-of-line (BEOL) interconnects in a first intermetal dielectric (IMD) layer on a substrate. The IC also includes second BEOL interconnects on the first IMD layer, coupled to the first BEOL interconnects through first BEOL vias in the first IMD layer. The IC further includes a second IMD layer on the second BEOL interconnects to seal airgaps between the plurality of second BEOL interconnects. The IC also includes etch stop spacers on portions of sidewalls of the second BEOL interconnects to separate the portions of the sidewalls from the second IMD layer. The IC further includes third BEOL interconnects on the second IMD layer and coupled to one or more of the second BEOL interconnects through second BEOL vias in the second IMD layer.
Abstract:
A system includes a first park circuit having a signal input, an output, and a control input. The system also includes a first signal path having an input and an output, wherein the input of the first signal path is coupled to the output of the first park circuit. The system also includes a second park circuit having a signal input, an output, and a control input, wherein the signal input of the second park circuit is coupled to the output of the first signal path. The system further includes a second signal path having an input and an output, wherein the input of the second signal path is coupled to the output of the second park circuit.
Abstract:
Certain aspects of the present disclosure generally relate to a semiconductor device with buried rails (e.g., buried power and ground rails). One example semiconductor device generally includes a substrate; a first rail, wherein a portion of the first rail is disposed in the substrate, the portion of the first rail having a first width greater than a second width of another portion of the first rail; a second rail, wherein a portion of the second rail is disposed in the substrate, the portion of the second rail having a third width greater than a fourth width of another portion of the second rail; and one or more transistors disposed above the substrate and between the first rail and the second rail.
Abstract:
Certain aspects of the present disclosure generally relate to a semiconductor device with a heterojunction bipolar transistor (HBT) integrated with a gate-all-around (GAA) transistor. One example semiconductor device generally includes a first substrate, a second substrate adjacent to the first substrate, a GAA transistor disposed above the first substrate, and a HBT disposed above the second substrate. Other aspects of the present disclosure generally relate to a method for fabricating a semiconductor device. An exemplary fabrication method generally comprises forming a GAA transistor disposed above a first substrate and forming a HBT disposed above a second substrate, wherein the second substrate is adjacent to the first substrate.
Abstract:
Certain aspects provide methods and apparatus for in-memory convolution computation. An example circuit for such computation generally includes a memory cell having a bit-line and a complementary bit-line and a computation circuit coupled to a computation input node of the circuit and at least one of the bit-line or the complementary bit-line. In certain aspects, the computation circuit comprises a counter, an NMOS transistor coupled to the memory cell, and a PMOS transistor coupled to the memory cell, drains of the NMOS and PMOS transistors being coupled to the counter.
Abstract:
A semiconductor device is disclosed that includes a plurality of fins on a substrate. A long channel gate is disposed over a first portion of the plurality of fins. A gate contact is provided having an extended portion that extends into an active area from a gate contact base outside the active area.