Abstract:
Enhanced Hc and Hk in addition to higher thermal stability to 400° C. are achieved in magnetic devices by adding dusting layers on top and bottom surfaces of a spacer in a synthetic antiferromagnetic (SAF) structure to give a RL1/DL1/spacer/DL2/RL2 reference layer configuration where RL1 and RL2 layers exhibit perpendicular magnetic anisotropy (PMA), the spacer induces antiferromagnetic coupling between RL1 and RL2, and DL1 and DL2 are dusting layers that enhance PMA. RL1 and RL2 layers are selected from laminates such as (Ni/Co)n, L10 alloys, or rare earth-transition metal alloys. The reference layer may be incorporated in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. Dusting layers and a similar SAF design may be employed in a free layer for Ku enhancement and to increase the retention time of a memory cell.
Abstract:
Methods of forming memory cells, magnetic memory cell structures, and arrays of magnetic memory cell structures are disclosed. Embodiments of the methods include patterning a precursor structure to form a stepped structure including at least an upper discrete feature section and a lower feature section with a broader width, length, or both than the upper discrete feature section. The method uses patterning acts directed along a first axis, e.g., an x-axis, and then along a second axis, e.g., a y-axis, that is perpendicular to or about perpendicular to the first axis. The patterning acts may therefore allow for more unifoimity between a plurality of formed, neighboring cell core structures, even at dimensions below about thirty nanometers. Magnetic memory structures and memory cell arrays are also disclosed.
Abstract:
Memory cells are disclosed. Magnetic regions within the memory cells include an alternating structure of magnetic sub-regions and coupler sub-regions. The coupler material of the coupler sub-regions antiferromagnetically couples neighboring magnetic sub-regions and effects or encourages a vertical magnetic orientation exhibited by the neighboring magnetic sub-regions. Neighboring magnetic sub-regions, spaced from one another by a coupler sub-region, exhibit oppositely-directed magnetic orientations. The magnetic and coupler sub-regions may each be of a thickness tailored to form the magnetic region in a compact structure. Interference between magnetic dipole fields emitted from the magnetic region on switching of a free region in the memory cell may be reduced or eliminated. Also disclosed are semiconductor device structures, spin torque transfer magnetic random access memory (STT-MRAM) systems, and methods of fabrication.
Abstract:
A magnetic element is disclosed wherein first and second interfaces of a free layer with a Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to lower switching current or increase thermal stability in a magnetic tunnel junction (MTJ). In a MTJ with a bottom spin valve configuration where the Hk enhancing layer is an oxide, the capping layer contacting the Hk enhancing layer is selected to have a free energy of oxide formation substantially greater than that of the oxide. The free layer may be a single layer or composite comprised of an Fe rich alloy such as Co20Fe60B20. With a thin free layer, the interfacial perpendicular anisotropy may dominate the shape anisotropy to generate a magnetization perpendicular to the planes of the layers. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.
Abstract:
A process for manufacturing a high performance MTJ it is described: A first cap layer of NiFeHf is deposited on the free layer, followed by a second cap layer of Ru on Ta. The device is then heated so that oxygen trapped in the free layer diffuses into the NiFeHf layer, thereby sharpening the interface between the tunnel barrier layer and the free layer.
Abstract:
An STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The device includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a free layer that is an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer has a low Gilbert damping factor and a very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
Abstract:
A high-amplitude magnetic angle sensor is described along with a process for its manufacture. A thin tantalum nitride hard mask, used to pattern the device, is left in place within the completed structure but, by first converting most of it to tantalum oxide, its effect on current shunting is greatly reduced.
Abstract:
An MTJ cell without footings and free from electrical short-circuits across a tunneling barrier layer is formed by using a Ta hard mask layer and a combination of etches. A first etch patterns the Ta hard mask, while a second etch uses O2 applied in a single high power process at two successive different power levels. A first power level of between approximately 200 W and 500 W removes BARC, photoresist and Ta residue from the first etch, the second power level, between approximately 400 W and 600 W continues an etch of the stack layers and forms a protective oxide around the etched sides of the stack. Finally, an etch using a carbon, hydrogen and oxygen gas completes the etch while the oxide layer protects the cell from short-circuits across the lateral edges of the barrier layer.
Abstract:
A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) is disclosed. The MTJ has a MgO tunnel barrier layer formed with a natural oxidation process to achieve a low RA (10 ohm-um2) and a Fe or Fe/CoFeB/Fe free layer which provides a lower intrinsic damping constant than a CoFeB free layer. A Fe, FeB, or Fe/CoFeB/Fe free layer when formed with a MgO tunnel barrier (radical oxidation process) and a CoFeB AP1 pinned layer in a MRAM MTJ stack annealed at 360° C. provides a high dR/R (TMR)>100% and a substantial improvement in read margin with a TMR/Rp_cov=20. High speed measurement of 100 nm×200 nm oval STT-RAM MTJs has shown a Jc0 for switching a Fe free layer is one half that for switching an amorphous CO40Fe40B20 free layer. A Fe/CoFeB/Fe free layer configuration allows the Hc value to be increased for STT-RAM applications.
Abstract:
A spin valve sensor system and a method for fabricating the same are provided. Such spin valve sensor includes a pinned layer having a pinned layer magnetization. Also included is a free layer disposed adjacent the pinned layer. The free layer has a free layer magnetization perpendicular to the pinned layer magnetization in the absence of an external field. A pinning layer is disposed adjacent the pinned layer for fixing the pinned layer magnetization. Further included is an underlayer disposed adjacent the pinning layer. Such underlayer comprises NiFeX. Disposed adjacent the underlayer and the pinning layer is an upper layer. The upper layer comprises a material selected from the group consisting of NiFe and CoFe for increasing a GMR ratio associated with the SV sensor.