摘要:
In some examples, a transistor includes a drain, a channel, and a gate. The channel surrounds the drain and has a channel length to width ratio. The gate is over the channel to provide an active channel region that has an active channel region length to width ratio that is greater than the channel length to width ratio.
摘要:
A field-effect transistor (FET) includes, a first drain, a second drain, a body and a gate region. The gate region has a length, and is configured and arranged to create, in response to a gate voltage, a channel that is in the body, between the first and second drains, and along the length of the gate region. A plurality of body dropdowns are located in the gate region and are spaced along a width of the gate region. Each of the body dropdowns are configured and arranged to provide an electrical contact to the body for biasing purposes.
摘要:
A P-type well region in which an inverter making up an SRAM cell is formed is subdivided into two portions, which are disposed on the opposite sides of an N-type well region NW1 and are formed so that a diffusion layer forming a transistor has no curvature while causing the layout direction to run in a direction parallel to well boundary lines and bit lines. At intermediate locations of an array, regions for use in supplying power to the substrate are formed in parallel to word lines in such a manner that one region is provided per group of thirty two memory cell rows or sixty four cell rows.
摘要:
A method includes: etching a silicon substrate except for a silicon substrate portion on which a channel region is to be formed to form first and second trenches respectively at a first side and a second side of the silicon substrate portion; filling the first and second trenches by epitaxially growing a semiconductor layer having etching selectivity against silicon and further a silicon layer; removing the semiconductor layer selectivity by a selective etching process to form voids underneath the silicon layer respectively at the first side and the second side of the substrate portion; burying the voids at least partially with a buried insulation film; forming a gate insulation film and a gate electrode on the silicon substrate portion; and forming a source region in the silicon layer at the first side of the silicon substrate portion and a drain region at the second side of the silicon substrate portion.
摘要:
A chip includes a semiconductor substrate, a well region in the semiconductor substrate, and a Dynamic Threshold Metal-Oxide Semiconductor (DTMOS) transistor formed at a front side of the semiconductor substrate. The DTMOS transistor includes a gate electrode, and a source/drain region adjacent to the gate electrode. The source/drain region is disposed in the well region. A well pickup region is in the well region, and the well pickup region is at a back side of the semiconductor substrate. The well pickup region is electrically connected to the gate electrode.
摘要:
The invention provides a body-contact metal-oxide-semiconductor field effect transistor (MOSFET) device. The body-contact MOSFET device includes a substrate. An active region is disposed on the substrate. A gate strip is extended along a first direction disposed on a first portion of the active region. A source doped region and a drain doped region are disposed on a second portion and a third portion of the active region, adjacent to opposite sides of the gate strip. The opposite sides of the gate strip are extended along the first direction. A body-contact doped region is disposed on a fourth portion of the active region. The body-contact doped region is separated from the gate strip by a fifth portion of the active region. The fifth portion is not covered by any silicide features.
摘要:
A semiconductor device includes a pillar-shaped silicon layer and a first-conductivity-type diffusion layer in an upper portion of the pillar-shaped silicon layer. A sidewall having a laminated structure including an insulating film and polysilicon resides on an upper sidewall of the pillar-shaped silicon layer. A top of the polysilicon of the sidewall is electrically connected to a top of the first-conductivity-type diffusion layer and has the same conductivity as the diffusion layer.
摘要:
A semiconductor device production method includes: forming a semiconductor region including a first region, a second region connecting with the first region and having a width smaller than that of the first region, and a third region connecting with the second region and having a width smaller than that of the second region; forming a gate electrode including a first part crossing the third region and a second part extending from the first part across the first region; forming a side wall insulation film on the gate electrode to cover part of the second region while exposing the remaining part of the second region; implanting a second conductivity type impurity into the first region and the remaining part of the second region; performing heat treatment; removing part of the side wall insulation film, and forming a silicide layer on the first region and the remaining part of the second region.
摘要:
An integrated circuit including a semiconductor layer; and a MOS transistor including first and second power terminals and a bulk insulated from the semiconductor layer, the first power terminal being intended to receive an oscillating signal, the transistor gate and the bulk being connected to the first power terminal.
摘要:
Provision of a body control contact adjacent a transistor and between the transistor and a contact to the substrate or well in which the transistor is formed allows connection and disconnection of the substrate of the transistor to and from a zero (ground) or substantially arbitrary low voltage in accordance with control signals applied to the gate of the transistor to cause the transistor to exhibit a variable threshold which maintains good performance at low supply voltages and reduces power consumption/dissipation which is particularly advantageous in portable electronic devices. Floating body effects (when the transistor substrate in disconnected from a voltage source in the “on” state) are avoided since the substrate is discharged when the transistor is switched to the “off” state. The transistor configuration can be employed with both n-type and p-type transistors which may be in complementary pairs.