Abstract:
A method of fabricating a fin-like field-effect transistor device is disclosed. The method includes forming mandrel features over a substrate and performing a first cut to remove mandrel features to form a first space. The method also includes performing a second cut to remove a portion of mandrel features to form a line-end and an end-to-end space. After the first and the second cuts, the substrate is etched using the mandrel features, with the first space and the end-to-end space as an etch mask, to form fins. Depositing a space layer to fully fill in a space between adjacent fins and cover sidewalls of the fins adjacent to the first space and the end-to-end space. The spacer layer is etched to form sidewall spacers on the fins adjacent to the first space and the end-to-end space and an isolation trench is formed in the first space and the end-to-end space.
Abstract:
A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
Abstract:
The present disclosure describes methods for transferring a desired layout into a target layer on a semiconductor substrate. An embodiment of the methods includes forming a first desired layout feature as a first line over the target layer; forming a spacer around the first line; depositing a spacer-surrounding material layer; removing the spacer to form a fosse pattern trench surrounding the first line; and transferring the fosse pattern trench into the target layer to form a fosse feature trench in the target layer, wherein the fosse feature trench surrounds a first portion of the target layer that is underneath a protection layer. In some embodiments, the method further includes patterning a second desired layout feature of the desired layout into the target layer wherein the fosse feature trench and the protection layer serve to self-align the second desired layout feature with the first portion of the target layer.
Abstract:
A method embodiment for patterning a semiconductor device includes patterning a dummy layer over a hard mask to form one or more dummy lines. A sidewall aligned spacer is conformably formed over the one or more dummy lines and the hard mask. A first reverse material layer is formed over the sidewall aligned spacer. A first photoresist is formed and patterned over the first reverse material layer. The first reverse material layer using the first photoresist as a mask, wherein the sidewall aligned spacer is not etched. The one or more dummy lines are removed, and the hard mask is patterned using the sidewall aligned spacer and the first reverse material layer as a mask. A material used for forming the sidewall aligned spacer has a higher selectivity than a material used for forming the first reverse material layer.
Abstract:
A method embodiment for patterning a semiconductor device includes patterning a dummy layer over a hard mask to form one or more dummy lines. A sidewall aligned spacer is conformably formed over the one or more dummy lines and the hard mask. A first reverse material layer is formed over the sidewall aligned spacer. A first photoresist is formed and patterned over the first reverse material layer. The first reverse material layer using the first photoresist as a mask, wherein the sidewall aligned spacer is not etched. The one or more dummy lines are removed, and the hard mask is patterned using the sidewall aligned spacer and the first reverse material layer as a mask. A material used for forming the sidewall aligned spacer has a higher selectivity than a material used for forming the first reverse material layer.
Abstract:
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. A first conductive feature and a second conductive feature are provided. A first hard mask (HM) is formed on the first conductive feature. A patterned dielectric layer is formed over the first and the second conductive features, with first openings to expose the second conductive features. A first metal plug is formed in the first opening to contact the second conductive features. A second HM is formed on the first metal plugs and another patterned dielectric layer is formed over the substrate, with second openings to expose a subset of the first metal plugs and the first conductive features. A second metal plug is formed in the second openings.
Abstract:
A method includes forming a first pattern having a first feature of a first material on a semiconductor substrate. A second pattern with a second feature and third feature of a second material, interposed by the first feature, is formed on the semiconductor substrate. Spacer elements then are formed on sidewalls of the first feature, the second feature, and the third feature. After forming the spacer elements, the second material comprising the second and third features is selectively removed to form a first opening and a second opening. The first feature, the first opening and the second opening are used as a masking element to etch the target layer.
Abstract:
The present disclosure provides a method for forming patterns in a semiconductor device. In accordance with some embodiments, the method includes providing a substrate and a patterning-target layer over the substrate; forming one or more mandrel patterns over the patterning-target layer; forming an opening in a resist layer by removing a first mandrel pattern and removing a portion of the resist layer that covers the first mandrel pattern; forming spacers adjacent to sidewalls of a second mandrel pattern; removing the second mandrel pattern to expose the spacers; forming a patch pattern over the spacers and aligned with the opening; etching the patterning-target layer using the patch pattern and the spacers as mask elements to form final patterns; and removing the patch pattern and the spacers to expose the final patterns.
Abstract:
A method of fabricating a fin-like field-effect transistor (FinFET) device is disclosed. A plurality of mandrel features are formed on a substrate. First spacers are formed along sidewalls of the mandrel feature and second spacers are along sidewalls of the first spacers. Two back-to-back adjacent second spacers separate by a gap in a first region and merge together in a second region of the substrate. A dielectric feature is formed in the gap and a dielectric mesa is formed in a third region of the substrate. A first subset of the first spacer is removed in a first cut. Fins and trenches are formed by etching the substrate using the first spacer and the dielectric feature as an etch mask.
Abstract:
A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.