Abstract:
Leakage-aware activation control of a delayed keeper circuit for a dynamic read operation in a memory bit cell is disclosed. In one aspect, a leakage-aware activation control circuit is provided for a dynamic read circuit configured to perform read operations on a memory bit cell. To prevent or mitigate contention between the delayed keeper circuit and a read port circuit in the dynamic read circuit pulling a dynamic node to opposite voltage levels when a read operation is initiated, the leakage-aware activation control circuit is configured to adaptively control activation timing of the delayed keeper circuit based on a comparison of N-type Field-Effect Transistor (NFET) leakage current to P-type FET (PFET) leakage current. In this manner, the leakage-aware activation control circuit can adaptively adjust the activation timing of the delayed keeper circuit based on the actual relative strengths of NFETs and PFETs.
Abstract:
An adaptive clock distribution (ACD) system with a voltage tracking clock generator (VTCG) is disclosed. The ACD system includes a tunable-length delay (TLD) circuit, to generate a TLD clock by adding a preselected delay to a root clock, and a voltage droop detector for detecting a voltage droop in a supply voltage. The VTCG is configured to generate a VTCG clock, wherein a frequency of the VTCG clock is finely tuned to one of two or more values to correspond to a magnitude of the supply voltage during the voltage droop. A clock selector selects the VTCG clock as an ACD clock to be provided to an electronic circuit during the voltage droop and the TLD clock as the ACD clock when there is no voltage droop detected.
Abstract:
Automatic calibration circuits for operational calibration of critical-path time delays in adaptive clock distribution systems, and related methods and systems, are disclosed. The adaptive clock distribution system includes a tunable-length delay circuit to delay distribution of a clock signal provided to a clocked circuit, to prevent timing margin degradation of the clocked circuit after a voltage droop occurs in a power supply supplying power to the clocked circuit. The adaptive clock distribution system also includes a dynamic variation monitor to reduce frequency of the delayed clock signal provided to the clocked circuit in response to the voltage droop in the power supply, so that the clocked circuit is not clocked beyond its performance limits during a voltage droop. An automatic calibration circuit is provided in the adaptive clock distribution system to calibrate the dynamic variation monitor during operation based on operational conditions and environmental conditions of the clocked circuit.
Abstract:
In a static random access memory (SRAM), such as an SRAM cache in a processor or system-on-a-chip (SoC) device, an aging sensor is provided for testing degradation of SRAM cells comprising p-channel metal oxide semiconductor (PMOS) transistors. The minimum power supply voltage VDDMIN for the SRAM may be dynamically scaled up as the SRAM ages by performing read tests with and without the wordline overdrive voltage VWLOD.
Abstract:
In controlling power in a portable computing device (“PCD”), a power supply input to a PCD subsystem may be modulated with a modulation signal when an over-current condition is detected. Detection of the modulation signal may indicate to a processing core of the subsystem to reduce its processing load. Compensation for the modulation signal in the power supply input may be applied so that the processing core is essentially unaffected by the modulation signal.
Abstract:
In certain aspects, a system includes a voltage controller, wherein the voltage controller includes switches coupled between a voltage supply rail and an output of the voltage controller, each of the switches having a control input, and a control circuit coupled to the control inputs of the switches. The system also includes a timing circuit coupled to the control circuit, wherein the timing circuit includes a delay line, and flops, each of the flops having an input and an output, wherein the input of each of the flops is coupled to a respective node on the delay line, and the outputs of the flops are coupled to the control circuit.
Abstract:
Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
Abstract:
In certain aspects, a system comprises a voltage-droop mitigation circuit configured to monitor voltage droop in a supply voltage supplied to a circuit, and to perform voltage-droop mitigation for the circuit if the monitored voltage droop is equal to or greater than a droop threshold. In one aspect, the system also includes a performance monitor configured to track a number of clock cycles over which the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of clock cycles. In another aspect, the system also includes a performance monitor configured to track a number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within the time duration.
Abstract:
Leakage-aware activation control of a delayed keeper circuit for a dynamic read operation in a memory bit cell is disclosed. In one aspect, a leakage-aware activation control circuit is provided for a dynamic read circuit configured to perform read operations on a memory bit cell. To prevent or mitigate contention between the delayed keeper circuit and a read port circuit in the dynamic read circuit pulling a dynamic node to opposite voltage levels when a read operation is initiated, the leakage-aware activation control circuit is configured to adaptively control activation timing of the delayed keeper circuit based on a comparison of N-type Field-Effect Transistor (NFET) leakage current to P-type FET (PFET) leakage current. In this manner, the leakage-aware activation control circuit can adaptively adjust the activation timing of the delayed keeper circuit based on the actual relative strengths of NFETs and PFETs.
Abstract:
Dynamic tag compare circuits employing P-type Field-Effect Transistor (PFET)-dominant evaluation circuits for reduced evaluation time, and thus increased circuit performance, are provided. A dynamic tag compare circuit may be used or provided as part of searchable memory, such as a register file or content-addressable memory (CAM), as non-limiting examples. The dynamic tag compare circuit includes one or more PFET-dominant evaluation circuits comprised of one or more PFETs used as logic to perform a compare logic function. The PFET-dominant evaluation circuits are configured to receive and compare input search data to a tag(s) (e.g., addresses or data) contained in a searchable memory to determine if the input search data is contained in the memory. The PFET-dominant evaluation circuits are configured to control the voltage/value on a dynamic node in the dynamic tag compare circuit based on the evaluation of whether the received input search data is contained in the searchable memory.