摘要:
Contact openings are formed into a dielectric material exposing a surface portion of a semiconductor substrate. A first transition metal liner including at least one first transition metal element, a second transition metal liner including at least one second transition metal element that is different from the at least one first transition metal element and a metal contact are sequentially formed within each contact opening. Following a planarization process, the structure is annealed forming metal semiconductor alloy contacts at the bottom of each contact opening. Each metal semiconductor alloy contact that is formed includes the at least one first transition metal element, the at least one second transition metal element and a semiconductor element.
摘要:
A semiconductor device is provided that includes a gate structure on a channel region of a substrate. A source region and a drain region are present on opposing sides of the channel region. A first metal semiconductor alloy is present on an upper surface of at least one of the source and drain regions. The first metal semiconductor alloy extends to a sidewall of the gate structure. A dielectric layer is present over the gate structure and the first metal semiconductor alloy. An opening is present through the dielectric layer to a portion of the first metal semiconductor alloy that is separated from the gate structure. A second metal semiconductor alloy is present in the opening, is in direct contact with the first metal semiconductor alloy, and has an upper surface that is vertically offset and is located above the upper surface of the first metal semiconductor alloy.
摘要:
A device is created by forming a layer of dielectric material on a silicon-containing region of a semiconductor substrate. An opening is created through the layer of dielectric material, the opening having a bottom and exposing the silicon-containing region. A metal stack is formed within the opening. The metal stack includes at least a first metal film on the silicon-containing region and a second gettering metal film on the first metal film. The metal stack is annealed to cause oxygen to migrate from the substrate to the gettering metal film. A first liner is formed within the opening. A fill metal is deposited in the opening.
摘要:
Contact openings are formed into a dielectric material exposing a surface portion of a semiconductor substrate. An interfacial oxide layer is then formed in each contact opening and on an exposed surface portion of the interfacial oxide layer. A NiPt alloy layer is formed within each opening and on the exposed surface portion of each interfacial oxide layer. An anneal is then performed that forms a contact structure of, from bottom to top, a nickel disilicide alloy body having an inverted pyramidal shape, a Pt rich silicide cap region and an oxygen rich region. A metal contact is then formed within each contact opening and atop the oxygen rich region of each contact structure.
摘要:
A contact can be formed by forming a layer of dielectric material on a silicon-containing region of a semiconductor substrate. An opening is created through the layer of dielectric material that exposes the silicon-containing region. A metal stack is formed within the opening. The metal stack includes at least a first metal film having a first and second type of metal and a second metal film. The metal stack and the silicon-containing region of the semiconductor substrate are annealed to form a silicide that includes the first and second types of metal and that is in contact with the semiconductor substrate. A first liner is formed within the opening and a fill metal is deposited in the opening.
摘要:
A method of forming a metal semiconductor alloy that includes forming an intermixed metal semiconductor region to a first depth of a semiconductor substrate without thermal diffusion. The intermixed metal semiconductor region is annealed to form a textured metal semiconductor alloy. A second metal layer is formed on the textured metal semiconductor alloy. The second metal layer on the textured metal semiconductor alloy is then annealed to form a metal semiconductor alloy contact, in which metal elements from the second metal layer are diffused through the textured metal semiconductor alloy to provide a templated metal semiconductor alloy. The templated metal semiconductor alloy includes a grain size that is greater than 2× for the metal semiconductor alloy, which has a thickness ranging from 15 nm to 50 nm.
摘要:
Raised active regions having faceted semiconductor surfaces are formed on semiconductor fins by selective epitaxy such that the raised active regions are not merged among one another, but are proximal to one another by a distance less than a thickness of a metal semiconductor alloy region to be subsequently formed. A contiguous metal semiconductor alloy region is formed by depositing and reacting a metallic material with the semiconductor material of raised active regions. The contiguous metal semiconductor alloy region is in contact with angled surfaces of the plurality of raised active regions, and can provide a greater contact area and lower parasitic contact resistance than a semiconductor structure including merged semiconductor fins of comparable sizes. Merged fins enable smaller, and/or fewer, contact via structures than a total number of raised active regions can be employed to reduce parasitic capacitance between a gate electrode and the contact via structures.
摘要:
In one aspect, a method for fabricating an electronic device includes the following steps. A wafer is provided having at least one first active area and at least one second active area defined therein. One or more p-FET/n-FET devices are formed in the active areas, each having a p-FET/n-FET gate stack and p-FET/n-FET source and drain regions. A self-aligned silicide is formed in each of the p-FET/n-FET source and drain regions, wherein the self-aligned silicide in each of the p-FET source and drain regions has a thickness T1 and the self-aligned silicide in each of the n-FET source and drain regions having a thickness T2, wherein T1 is less than T2. During a subsequent trench silicidation in the p-FET/n-FET source and drain regions, the trench silicide metal will diffuse through the thinner self-aligned silicide in the p-FET device(s) but not through the thicker self-aligned silicide in the n-FET device(s).
摘要:
In one aspect, a method for silicidation includes the steps of: (a) providing a wafer having at least one first active area and at least one second active area defined therein; (b) masking the first active area with a first hardmask; (c) doping the second active area; (d) forming a silicide in the second active area, wherein the first hardmask serves to mask the first active area during both the doping step (c) and the forming step (d); (e) removing the first hardmask; (f) masking the second active area with a second hardmask; (g) doping the first active area; (h) forming a silicide in the first active area, wherein the second hardmask serves to mask the second active area during both the doping step (g) and the forming step (h); and (i) removing the second hardmask.
摘要:
A contact via hole is formed through at least one dielectric layer over a semiconductor substrate. A semiconductor material is deposited at the bottom of the contact via hole and atop the at least one dielectric layer by ion cluster deposition. An angled oxygen cluster deposition is performed to convert portions of the semiconductor material on the top surface of the at least one dielectric layer into a semiconductor oxide, while oxygen is not implanted into the deposited semiconductor material at the bottom of the contact via hole. A metal semiconductor alloy is formed at the bottom of the contact hole by deposition of a metal and an anneal. The semiconductor oxide at the top of the at least one dielectric layer can be removed during a preclean before metal deposition, a postclean after metal semiconductor alloy formation, and/or during planarization for forming contact via structures.