Abstract:
A semiconductor device includes a semiconductor substrate and a plurality of transistors. The semiconductor substrate includes at least an iso region (namely an open region) and at least a dense region. The transistors are disposed in the iso region and the dense region respectively. Each transistor includes at least a source/drain region. The source/drain region includes a first epitaxial layer having a bottom thickness and a side thickness, and the bottom thickness is substantially larger than or equal to the side thickness.
Abstract:
A semiconductor process includes the following steps. An interlayer is formed on a substrate. A first metallic oxide layer is formed on the interlayer. A reduction process is performed to reduce the first metallic oxide layer into a metal layer. A high temperature process is performed to transform the metal layer to a second metallic oxide layer.
Abstract:
A manufacturing method for a metal gate includes providing a substrate having at least a semiconductor device with a conductivity type formed thereon, forming a gate trench in the semiconductor device, forming a work function metal layer having the conductivity type and an intrinsic work function corresponding to the conductivity type in the gate trench, and performing an ion implantation to adjust the intrinsic work function of the work function metal layer to a target work function.
Abstract:
A semiconductor process includes the following steps. A substrate is provided, which includes an isolation structure and an oxide layer. The isolation structure divides the substrate into a first region and a second region. The oxide layer is located on the surface of the first region and the second region. A dry cleaning process is performed to remove the oxide layer. A dielectric layer is formed on the first region and the second region. A wet etching process is performed to remove at least one of the dielectric layers located on the first region and the second region. A semiconductor structure is fabricated by the above semiconductor process.
Abstract:
A method of fabricating a semiconductor structure, in which after an etching process is performed to form at least one recess within a semiconductor beside a gate structure, a thermal treatment is performed on the recess in a gas atmosphere including an inert gas before a silicon-containing epitaxial layer is formed in the recess through an epitaxy growth process.
Abstract:
A method for fabricating a metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a first transistor region and a second transistor region; forming a first metal-oxide semiconductor (MOS) transistor on the first transistor region and a second MOS transistor on the second transistor region, in which the first MOS transistor includes a first dummy gate and the second MOS transistor comprises a second dummy gate; forming a patterned hard mask on the second MOS transistor, in which the hard mask includes at least one metal atom; and using the patterned hard mask to remove the first dummy gate of the first MOS transistor.
Abstract:
A method for removing a photoresist is disclosed. First, a substrate including a patterned photoresist is provided. Second, an ion implantation is carried out on the substrate. Then, a non-oxidative pre-treatment is carried out on the substrate. The non-oxidative pre-treatment provides hydrogen, a carrier gas and plasma. Later, a photoresist-stripping step is carried out so that the photoresist can be completely removed.
Abstract:
A method of forming a selective area semiconductor compound epitaxy layer is provided. The method includes the step of using two silicon-containing precursors as gas source for implementing a process of manufacturing the selective area semiconductor compound epitaxy layer, so as to form a semiconductor compound epitaxy layer on an exposed monocrystalline silicon region of a substrate.
Abstract:
A liquid crystal display panel is provided. The LCD panel has a first substrate having at least a conductive material layer thereon, a second substrate having at least a repair line positioned in a predetermined area, and a liquid crystal layer positioned between the first substrate and the second substrate. The predetermined area is underneath the first substrate excluding the portions having the conductive material layer, thus reducing RC delay of the repair line.
Abstract:
A method for forming a junction region of a semiconductor device is disclosed. The steps of the method include providing a semiconductor substrate. A gate structure is formed on the semiconductor substrate. A dopant is implanted into the semiconductor substrate to form the junction region. An insulator layer is formed on the gate structure and the semiconductor substrate. A carbon-containing plasma treatment is performed to the insulator layer. A spacer is formed on a side-wall of the gate structure and the dopant is implanted into the semiconductor substrate to form a source/drain region next to the junction region. A heat treatment is performed to the semiconductor substrate.