Abstract:
In a method of detecting inhomogeneity of a layer, an incident light may be irradiated to at least two regions of the layer at a first incident angle position. First reflected lights reflected from the two regions of the layer may be sensed. The incident light may be irradiated to the at least two regions of the layer at a second incident angle position. Second reflected lights reflected from the two regions of the layer may be sensed. The first reflected lights and the second reflected lights may be compared with each other to obtain the inhomogeneity of the layer. Thus, the layer having a spot may be found.
Abstract:
Provided are a method for fabricating a semiconductor device The method for fabricating include providing a substrate including a first region and a second region, the first region including first and second sub-regions, and the second region including third and fourth sub-regions, forming first to fourth fins on the first and second regions to protrude from the substrate, the first fin being formed on the first sub-region, the second fin being formed on the second sub-region, the third fin being formed on the third sub-region, and the fourth fin being formed on the fourth sub-region, forming first to fourth dummy gate structures to intersect the first to fourth fins, the first dummy gate structure being formed on the first fin, the second dummy gate structure being formed on the second fin, the third dummy gate structure being formed on the third fin, and the fourth dummy gate structure being formed on the fourth fin, forming a first doped region in each of the first and second fins and a second doped region in each of the third and fourth fins by doping impurities into the first to fourth fins on both sides of the first to fourth dummy gate structures by performing an ion implantation process simultaneously in the first and second regions; and removing the first doped region of the first fin and the second doped region of the third fin, or removing the first doped region of the second fin and the second doped region of the fourth fin.
Abstract:
In a method of detecting inhomogeneity of a layer, an incident light may be irradiated to at least two regions of the layer at a first incident angle position. First reflected lights reflected from the two regions of the layer may be sensed. The incident light may be irradiated to the at least two regions of the layer at a second incident angle position. Second reflected lights reflected from the two regions of the layer may be sensed. The first reflected lights and the second reflected lights may be compared with each other to obtain the inhomogeneity of the layer. Thus, the layer having a spot may be found.
Abstract:
Semiconductor devices include a semiconductor substrate with a stack structure protruding from the semiconductor substrate and surrounded by an isolation structure. The stack structure includes an active layer pattern and a gap-filling insulation layer between the semiconductor substrate and the active layer pattern. A gate electrode extends from the isolation structure around the stack structure. The gate electrode is configured to provide a support structure for the active layer pattern. The gate electrode may be a gate electrode of a silicon on insulator (SOI) device formed on the semiconductor wafer and the semiconductor device may further include a bulk silicon device formed on the semiconductor substrate in a region of the semiconductor substrate not including the gap-filing insulation layer.
Abstract:
A washing machine including a plurality of washers may include a fixing bracket coupled to a front of a first housing in which a first tub is disposed and a front of a second housing in which a second tub is disposed, to prevent the first housing and the second housing from being separated from each other.
Abstract:
An integrated circuit device includes a first transistor having a first channel between a first source/drain, and a second transistor having a second channel between a second source/drain. The first transistor operates based on a first amount of current and the second transistor operates based on a second amount of current different from the first amount of current. The first and second channels have fixed channel widths. The fixed channel widths may be based on fins or nanowires included in the first and second transistors.
Abstract:
Provided is a semiconductor device to which a pattern structure for performance improvement is applied. The semiconductor device includes first and second active regions spaced apart from each other in a first direction with an isolation layer interposed therebetween, a first normal gate formed on the first active region to extend in a second direction crossing the first direction, a first dummy gate having a portion overlapping with one end of the isolation layer and the other portion overlapping with the first active region and spaced apart from the first normal gate in the first direction, a second dummy gate having a portion overlapping with the other end of the isolation layer and the other portion overlapping with the second active region, a first normal source/drain contact formed on a source/drain region between the first normal gate and the first dummy gate, and a dummy contact formed on the isolation layer so as not to overlap with the first and second dummy gates and having a different size from the first normal source/drain contact.
Abstract:
An integrated circuit device includes a first transistor having a first channel between a first source/drain, and a second transistor having a second channel between a second source/drain. The first transistor operates based on a first amount of current and the second transistor operates based on a second amount of current different from the first amount of current. The first and second channels have fixed channel widths. The fixed channel widths may be based on fins or nanowires included in the first and second transistors.
Abstract:
Methods of forming a fin-shaped Field Effect Transistor (FinFET) are provided. The methods may include selectively incorporating source/drain extension-region dopants into source and drain regions of a semiconductor fin, using a mask to block incorporation of the source/drain extension-region dopants into at least portions of the semiconductor fin. The methods may include removing portions of the source and drain regions of the semiconductor fin to define recesses therein. The methods may include epitaxially growing source and drain regions from the recesses in the semiconductor fin.