Abstract:
A circuit layout data has a start value of a first-axis pitch and a start value of a second-axis pitch, the second axis pitch being transverse to the first-axis pitch. The start value of the first axis pitch and the start value of the second axis pitch correspond to single pattern lithography. The first axis pitch is scaled to a first axis single pattern-to-double pattern pitch transition threshold, and then additionally scaled until reaching a first axis double pattern resolution limit. Scaling the first axis pitch to the first axis double pattern resolution limit utilizes routing spaces parallel to the second axis pitch.
Abstract:
A semiconductor chip includes a circuit block. The circuit block includes a first transistor(s) having an enhanced first performance characteristic different from a second performance characteristic of a second transistor(s) of the circuit block. The circuit block also includes a marker layer to identify the first transistor(s).
Abstract:
An integrated circuit device includes a first metal layer including aluminum. The integrated circuit device includes a second metal layer including an interconnect structure. The interconnect structure includes a layer of first material including aluminum. The integrated circuit device includes an inter-diffusion layer that includes aluminum. The inter-diffusion layer is proximate to the first metal layer and proximate to the layer of first material including aluminum. The integrated circuit device includes a self-forming barrier layer that includes aluminum. The self-forming barrier layer is proximate to a dielectric layer and proximate to the layer of first material including aluminum.
Abstract:
A fin-based structure may include fins on a surface of a semiconductor substrate. Each of the fins may include a doped portion proximate to the surface of the semiconductor substrate. The fin-based structure may also include an isolation layer disposed between the fins and on the surface of the semiconductor substrate. The fin-based structure may also include a recessed isolation liner on sidewalls of the doped portion of the fins. An unlined doped portion of the fins may extend from the recessed isolation liner to an active potion of the fins at a surface of the isolation layer. The isolation layer is disposed on the unlined doped portion of the fins.
Abstract:
A fully depleted silicon-on-insulator MOSFET transistor with reduced variation in threshold voltage. The substrate of the transistor is doped to form a ground plane below a buried oxide layer. A lightly doped channel is formed over the buried oxide layer. A gate dielectric of Silicon Oxynitride is formed over the channel, and a polysilicon gate is formed over the gate dielectric. The polysilicon gate is doped to have a work function not greater 4.2 electron volts for a p-type doped channel (for an n-channel MOSFET), and not less than 5.0 electron volts for an n-type doped channel (for a p-channel MOSFET). The thickness of the buried oxide layer and the channel need not be greater than 20 nanometers and 10 nanometers, respectively.
Abstract:
A multigate transistor device such as a fin-shaped field effect transistor (FinFET) is fabricated by applying a self-aligned diffusion break (SADB) mask having an opening positioned to expose an area of at least one portion of at least one gate stripe designated as at least one tie-off gate in the multigate transistor device and removing the tie-off gate through the opening of the SADB mask to isolate transistors adjacent to the tie-off gate.
Abstract:
Systems and methods are directed to a three-terminal semiconductor device including a self-aligned via for connecting to a gate terminal Hardmasks and spacers formed over top portions and sidewall portions of a drain connection to a drain terminal and a source connection to a source terminal protect and insulate the drain connection and the source connection, such that short circuits are avoided between the source and drain connections and the self-aligned via. The self-aligned via provides a direct metal-gate connection path between the gate terminal and a metal line such as a M1 metal line while avoiding a separate gate connection layer.
Abstract:
A semiconductor device includes a gate and a first active contact adjacent to the gate. Such a device further includes a first stacked contact electrically coupled to the first active contact, including a first isolation layer on sidewalls electrically isolating the first stacked contact from the gate. The device also includes a first via electrically coupled to the gate and landing on the first stacked contact. The first via electrically couples the first stacked contact and the first active contact to the gate to ground the gate.
Abstract:
A method of forming a semiconductor fin of a FinFET device includes conformally depositing an amorphous or polycrystalline thin film of silicon-germanium (SiGe) on the semiconductor fin. The method also includes oxidizing the amorphous or polycrystalline thin film to diffuse germanium from the amorphous or polycrystalline thin film into the semiconductor fin. Such a method further includes removing an oxidized portion of the amorphous or polycrystalline thin film.
Abstract:
A multi-cell transistor includes gate body elements, gate tip elements extending from the gate body elements, and gate extensions extending from the gate tip elements. A patterned metal layer is provided between adjacent gate elements and at least portions of adjacent gate tip elements. Spacers are provided on the sides of each gate body element and each gate tip element to prevent the patterned metal layer from creating a short circuit between adjacent gate tip elements.