Abstract:
A method for producing a metal layer on a wafer is described. In one embodiment the method comprises providing a semiconductor wafer including a coating, printing a metal particle paste on the semiconductor wafer thereby forming a metal layer and heating the metal layer in a reductive gas for sintering the metal particle paste or for annealing a sintered metal particle paste in an oven.
Abstract:
According to an embodiment of a method of manufacturing a plurality of semiconductor devices on a wafer, the method includes forming a structure layer comprising a plurality of same semiconductor device structures and providing a protective layer on the structure layer. The protective layer on a first one of the plurality of semiconductor device structures differs from the protective layer on a second one of the plurality of semiconductor device structures.
Abstract:
A method of manufacturing a wafer. The method includes providing a wafer that includes a plurality of semiconductor device structures, and testing at least one of the plurality of semiconductor device structures. Based on a test result, a liquid is provided on a selected portion of the wafer to selectively alter at least one circuit element within the at least one of the plurality of semiconductor device structures.
Abstract:
According to various embodiments, a method of processing a substrate may include: disposing a viscous material over a substrate including at least one topography feature extending into the substrate to form a protection layer over the substrate; adjusting a viscosity of the viscous material during a contacting period of the viscous material and the substrate to stabilize a spatial distribution of the viscous material as disposed; processing the substrate using the protection layer as mask; and removing the protection layer after processing the substrate.
Abstract:
A method of manufacturing a wafer. The method includes providing a wafer that includes a plurality of semiconductor device structures, and testing at least one of the plurality of semiconductor device structures. Based on a test result, a substance is provided on a selected portion of the wafer to selectively configure a circuit element within the at least one of the plurality of semiconductor device structures.
Abstract:
According to various embodiments, a method of processing a substrate may include: disposing a viscous material over a substrate including at least one topography feature extending into the substrate to form a protection layer over the substrate; adjusting a viscosity of the viscous material during a contacting period of the viscous material and the substrate to stabilize a spatial distribution of the viscous material as disposed; processing the substrate using the protection layer as mask; and removing the protection layer after processing the substrate.
Abstract:
A method of manufacturing a wafer. The method includes providing a wafer that includes a plurality of semiconductor device structures, and testing at least one of the plurality of semiconductor device structures. Based on a test result, a liquid is provided on a selected portion of the wafer to selectively alter at least one circuit element within the at least one of the plurality of semiconductor device structures.
Abstract:
According to various embodiments, a method for processing a semiconductor substrate may include: covering a plurality of die regions of the semiconductor substrate with a metal; forming a plurality of dies from the semiconductor substrate, wherein each die of the plurality of dies is covered with the metal; and, subsequently, annealing the metal covering at least one die of the plurality of dies.
Abstract:
In accordance with an alternative embodiment of the present invention, a method for forming a semiconductor device includes applying a paste over a semiconductor substrate, and forming a ceramic carrier by solidifying the paste. The semiconductor substrate is thinned using the ceramic carrier as a carrier.
Abstract:
A method for forming a semiconductor device includes forming device regions in a semiconductor substrate having a first side and a second side. The device regions are formed adjacent the first side. The method further includes forming a seed layer over the first side of the semiconductor substrate, and forming a patterned resist layer over the seed layer. A contact pad is formed over the seed layer within the patterned resist layer. The method further includes removing the patterned resist layer after forming the contact pad to expose a portion of the seed layer underlying the patterned resist layer, and forming a protective layer over the exposed portion of the seed layer.