摘要:
An alternating phase shift mask for use with extreme ultraviolet lithography is provided. A substrate with a planar top surface is used as a base for the phase shift mask. A spacer layer serves as a Fabry-Perot cavity for controlling the phase shift difference between two adjacent surfaces of the phase shift mask and controlling the reflectivity from the top of the second multilayer. A protective layer serves as an etch stop layer to protect a first multilayer region in certain regions of the phase shift mask, while other regions of the phase shift mask utilize a second multilayer region for achieving a phase shift difference. Some embodiments may further include an absorber layer region to provide areas with no reflectance, in addition to the areas of alternating phase shift. Embodiments of the present invention may be used to monitor the focus and aberration of a lithography tool.
摘要:
A method of fabricating a replacement metal gate structure for a CMOS device including forming a dummy gate structure on an nFET portion and a pFET portion of the CMOS device; depositing an interlayer dielectric between the dummy gate structures; removing the dummy gate structures from the nFET and pFET portions, resulting in a recess on the nFET portion and a recess on the pFET portion; conformally depositing a gate dielectric into the recesses on the nFET and pFET portions; depositing sequential layers of a first titanium nitride, tantalum nitride and a second titanium nitride into the recesses on the nFET and pFET portions; removing the second layer of titanium nitride from the nFET portion only; depositing a third layer of titanium nitride into the recesses on the nFET and pFET portions; and filling the remainder of the cavity on the nFET and pFET portions with a metal.
摘要:
A method comprises providing a semiconductor structure comprising a substrate, an electrically insulating layer on the substrate and a semiconductor feature on the electrically insulating layer. A gate structure is formed on the semiconductor feature. An in situ doped semiconductor material is deposited on portions of the semiconductor feature adjacent the gate structure. Dopant is diffused from the in situ doped semiconductor material into the portions of the semiconductor feature adjacent the gate structure, the diffusion of the dopant into the portions of the semiconductor feature adjacent the gate structure forming doped source and drain regions in the semiconductor feature.
摘要:
When forming sophisticated SOI devices, a substrate diode and a film diode are formed by using one and the same implantation mask for determining the well dopant concentration in the corresponding well regions. Consequently, during the further processing, the well dopant concentration of any transistor elements may be achieved independently from the well regions of the diode in the semiconductor layer.
摘要:
A multilayer interconnect structure is formed by, providing a substrate (40) having thereon a first dielectric (50, 27) for supporting a multi-layer interconnection (39) having lower conductor MN (22, 23), upper conductor MN+1 (34, 35), dielectric interlayer (DIL) (68) and interconnecting via conductor VN+1/N (36, 36′). The lower conductor MN (22, 23) has a first upper surface (61) located in a recess below a second upper surface (56) of the first dielectric (50, 27). The DIL (68) is formed above the first (61) and second (56) surfaces. A cavity (1263) is etched through the DIL (68) from a desired location (122) of the upper conductor MN+1 (34), exposing the first surface (61). The cavity (1263) is filled with a further electrical conductor (80) to form the upper conductor MN+1 (34) and the connecting via conductor VN+1/N (36, 36′) making electrical contact with the first upper surface (61). A critical dimension (32, 37) between others (23) of lower conductors MN (22, 23) and the via conductor VN+1/N (36, 36′) is lengthened. Leakage current and electro-migration there-between are reduced.
摘要:
Performance of P-channel transistors may be enhanced on the basis of an embedded strain-inducing semiconductor alloy by forming a gate electrode structure on the basis of a high-k dielectric material in combination with a metal-containing cap layer in order to obtain an undercut configuration of the gate electrode structure. Consequently, the strain-inducing semiconductor alloy may be formed on the basis of a sidewall spacer of minimum thickness in order to position the strain-inducing semiconductor material closer to a central area of the channel region.
摘要:
Aspects of the present disclosure include a computer-implemented method for designing a temperature-compliant integrated circuit (IC). The method can include: calculating a thermal resistance of an IC layout, the IC layout having an area-dependent thermal conductance, a fin thermal conductance, and a gate thermal conductance each based on a device geometry of a plurality of transistors in the IC layout; calculating a self-heating temperature as directly proportional to the thermal resistance; comparing the self-heating temperature with a threshold temperature; in response to the self-heating temperature exceeding the threshold temperature, automatically modifying the device geometry of the IC layout to reduce at least one of the area term and the perimeter term, thereby reducing the self-heating temperature of the IC layout; and designing the temperature-compliant IC layout by repeating the calculating and automatically modifying steps until the self-heating temperature does not exceed the threshold temperature.
摘要:
A 3-dimensional hybrid package including an integrated circuit chip stack formed on a laminate, the integrated chip stack further including a first chip and a second chip. The first chip is connected to the laminate through first solder bumps, each associated with a first through-silicon via (TSV), and first metal leads embedded in a first polymer tape that extends from first peripheral metal pads formed on a back side of the first chip to the laminate. The second chip is connected to the first peripheral metal pads on the back side of the first chip through second solder bumps formed on a front side of the second chip. The second chip is connected to the laminate by second metal leads, embedded in a second polymer tape that extend from second peripheral metal pads formed on a back side of the second chip to the laminate.
摘要:
There is set forth herein a gate contact structure for a gate. The gate contact structure can include a first contact layer and a second contact layer. In one embodiment, a gate contact layer can define a contact that provides a gate tie down. In one embodiment, a gate contact layer can have a minimum width larger than a gate length.
摘要:
A semiconductor structure includes a semiconductor substrate, semiconductor device(s) on the substrate, and metal resistor layer(s) above the semiconductor device(s), each metal resistor layer acting as a first plate for a MIM capacitor. The structure further includes a layer of insulator material above the first plate, and metal conductor layer(s) above the insulator layer, each metal conductor layer acting as a second plate for a MIM capacitor. Fabricating the MIM capacitor uses metal and insulator used in creating electrical connections to the semiconductor device(s), saving two masks typically used to fabricate a MIM capacitor.