Abstract:
A system for cleaning dopant contamination in a process chamber is disclosed. The system includes a susceptor and a chamber kit component, a first plurality of lamps configured to heat the susceptor, a second plurality of lamps configured to heat the chamber kit component, and a gas supply configured to provide a chlorine cleaning gas. The system is configured to deposit a layer on a substrate at a deposition temperature and perform an in-situ clean of the process chamber, including the chamber kit component, at the deposition temperature. A method for cleaning dopant contamination includes depositing a layer over a substrate at a deposition temperature, performing an in-situ clean of the process chamber and a process kit component at the deposition temperature, unloading the substrate, and performing a dedicated clean at a clean temperature. In some examples, the clean temperature is about equal to the deposition temperature.
Abstract:
An embodiment is a method of manufacturing a semiconductor device, the method including forming a first gate over a substrate, forming a recess in the substrate adjacent the first gate, epitaxially forming a strained material stack in the recess, the strained material stack comprising at least three layers, each of the at least three layers comprising a dopant. The method further includes co-implanting the strained material stack with dopants comprising boron, germanium, indium, tin, or a combination thereof, forming a metal layer on the strained material stack, and annealing the metal layer and the strained material stack forming a metal-silicide layer.
Abstract:
An ion beam generator includes a plurality of arc chambers, wherein each arc chamber of the plurality of arc chamber is integral with every arc chamber of the plurality of arc chambers. The ion beam generator further includes a plurality of extraction slits, wherein each extraction slit of the plurality of extraction slits is configured to extract ions from a corresponding arc chamber of the plurality of arc chambers. The ion beam generator further includes a plurality of arc slits, wherein each arc slit of the plurality of arc slits is configured to provide an ion path between a corresponding extraction slit of the plurality of extraction slits and the corresponding arc chamber of the plurality of arc chambers.
Abstract:
An ion implantation method includes generating a first ion beam and a second ion beam, the first ion beam having a different configuration from the second ion beam. The method further includes scanning and directing the first ion beam along a first path toward a workpiece to perform ion implantation on the workpiece. The method alternatively includes directing the second ion beam along a second path toward the workpiece to perform ion implantation on the workpiece. The first path is different from the second path.
Abstract:
An atomic layer deposition apparatus includes a chamber including a plurality of regions; and a heating device respectively providing specific temperature ranges for the plurality of regions. By flowing precursor gases at different flow rates in the different regions, thin films can be simultaneously formed in the different regions having different film thicknesses.
Abstract:
An embodiment is a method of manufacturing a semiconductor device, the method including forming a first gate over a substrate, forming a recess in the substrate adjacent the first gate, epitaxially forming a strained material stack in the recess, the strained material stack comprising at least three layers, each of the at least three layers comprising a dopant. The method further includes co-implanting the strained material stack with dopants comprising boron, germanium, indium, tin, or a combination thereof, forming a metal layer on the strained material stack, and annealing the metal layer and the strained material stack forming a metal-silicide layer.
Abstract:
Embodiments of the disclosure include a shallow trench isolation (STI) structure and a method of forming the same. A trench is formed in a substrate. A silicon oxide and a silicon liner layer are formed on sidewalls and a bottom surface of the trench. A flowable silicon oxide material fills in the trench, is cured, and then is partially removed. Another silicon oxide is deposited in the trench to fill the trench. The STI structure in a fabricated device includes a bottom portion having silicon oxide and a top portion having additionally a silicon oxide liner and a silicon liner on the sidewalls.
Abstract:
Embodiments of the disclosure include a shallow trench isolation (STI) structure and a method of forming the same. A trench is formed in a substrate. A silicon oxide and a silicon liner layer are formed on sidewalls and a bottom surface of the trench. A flowable silicon oxide material fills in the trench, is cured, and then is partially removed. Another silicon oxide is deposited in the trench to fill the trench. The STI structure in a fabricated device includes a bottom portion having silicon oxide and a top portion having additionally a silicon oxide liner and a silicon liner on the sidewalls.
Abstract:
A semiconductor annealing method and system uses a vacuum pump to produce a vacuum environment in the annealing chamber to thereby remove undesired gas element influences. A control system obtains pressure and temperature measurements from the annealing chamber to control operation of the heating elements and vacuum pump to thereby maintain process integrity.
Abstract:
A system and method for forming a semiconductor device is provided. The system may measure characteristics of the substrate to determine an amount of induced stress on the substrate. The measured characteristics may include warpage, reflectivity and/or crack information about the substrate. The induced stress may be determined, at least in part, based on the measured characteristics. The system may compare the induced stress on the substrate to a maximum intrinsic strength of the substrate and adjust an anneal for the substrate based on the comparison. The adjustment may reduce or limit breakage of the substrate during the anneal. The system may control at least one of a peak anneal temperature and a maximum anneal duration for an anneal unit, which may perform an anneal on the substrate. The measurements and control may be performed ex-situ or in-situ with the anneal.