Abstract:
A device for doping, deposition or oxidation of semiconductor material at low pressure in a process tube, is provided with a tube closure as well as devices for supplying and discharging process gases and for generating a negative pressure in the process tube. A closure of the process chamber that is gas tight with respect to the process gases and the vacuum tight seal of the end of the tube closure are spatially separated from each other in relation to the atmosphere and are arranged on a same side of the process tube in such a manner that a bottom of a stopper, sealing the process chamber, rests against a sealing rim of the process tube and the tube closure end is sealed vacuum tight by means of a collar, which is attached to the process tube and against which a door rests sealingly.
Abstract:
A gas delivery system for supplying a process gas from a gas supply to a thermal processing furnace, a thermal processing furnace equipped with the gas delivery system, and methods for delivering process gas to a thermal processing furnace. The gas delivery system comprises a plurality of regulators, such as mass flow controllers, in a process gas manifold coupling a gas supply with a thermal processing furnace. The regulators establish a corresponding plurality of flows of a process gas at a plurality of flow rates communicated by the process gas manifold to the thermal processing furnace. The gas delivery system may be a component of the thermal processing furnace that further includes a liner that surrounds a processing space inside the thermal processing furnace.
Abstract:
A method and apparatus for thermal processing of a workpiece is provided. The time taken for a processing gas to be purged, or switched, during one or more processing steps is significantly reduced for thermal processing systems. The thermal processing system includes a heating chamber in accordance with one example embodiment of the present invention. A small-volume workpiece enclosure is disposed about the workpiece. A translation mechanism, e.g., in the form of a positioning assembly, supports the small-volume workpiece enclosure for moving the small-volume workpiece enclosure and the workpiece within the heating chamber. The small-volume workpiece enclosure enables the use of relatively smaller amounts of process (ambient) gases, and decreases the purge time of such gases. The heating chamber can have at least one of a thermal radiation intensity gradient and a temperature gradient for thermally processing the workpiece. The heating chamber can have one or more heating elements disposed about the heating chamber.
Abstract:
Heating installation for a reactor. The reactor is provided with gas feed openings and gas discharge openings opening into a treatment chamber for accommodating a wafer floating therein. By means of such a treatment a wafer can be heated and cooled relatively rapidly. During the actual treatment it is important that the gas is heated sufficiently and to this end a heating installation is present. The latter consists of heating means, such as electrical heating means, arranged in a body which adjoins the reactor and in which channels have been made which connect into the gas feed openings and through which the treatment gas or other gas is fed.
Abstract:
In a semiconductor device manufacturing apparatus and a semiconductor device manufacturing method, a furnace tube port gas introducing pipe (9) for supplying gas to only one end portion of a furnace tube (2) is provided separately from a process gas introducing pipe (5) for supplying process gas into the furnace tube (2), and when wafers (4) are inserted into the furnace tube (2), an oxygen atmospheric layer (11) is formed only at the furnace tube port by oxygen gas or oxygen gas diluted with nitrogen gas which is supplied from the furnace tube port gas introducing pipe (9).
Abstract:
A vertical furnace for use in a semiconductor manufacturing apparatus, which comprises a heater, an outer tube, an inner tube, all being disposed concentrically in a multi-layered fashion, a boat adapted to be introduced into the inner tube with a wafer loaded thereon, and a boat cover disposed internally of the inner tube concentrically therewith. The boat cover is comprised of a boat cover body and an auxiliary cover plate connected to said boat cover body with a given gap therebetween, the boat cover body having a predetermined number of slit apertures extending in a generator direction thereof, the auxiliary cover plate being disposed to cover the slit apertures. The introduced reactive gas flows in branched streams, one flowing through the inside of the boat cover and the other flowing in past the boat cover, whereby the film deposited on the wafer is improved in uniformity and homogeneity. Further, since the boat cover is provided on the inner tube in the form of a unitary body, adjustments relative thereto can be made easily, thus improving the efficiency of the maintenance works thereof.
Abstract:
An exhaust system for use with a high temperature furnace used to perform oxidation and/or annealing operations of the type used in semiconductor fabrication. The exhaust system is designed to permit the furnace to be used with a controlled environment chamber surrounding the entry to the process chamber of the furnace. The exhaust system allows a relatively high velocity flow of exhaust gas from the process chamber through the exhaust system to occur when a positive pressure (e.g., annealing) operations are performed. Such high velocity flow prevents (a) backstreaming and (b) the accumulation of non-uniform concentrations of exhaust gases in the exhaust system, thereby permitting the accurate monitoring of the concentration of a selected gas in the exhaust system. Based on such monitoring, the opening of the door to the process chamber of the furnace may be prevented when the concentration of the selected gas exceeds a predetermined level. Preferably, all portions of the exhaust system potentially exposed to process chamber gases are made from quartz.
Abstract:
An apparatus for heat processing a substrate includes a heat processing furnace, which has a flat inner space for accommodating the substrate, and a gas introduction unit which introduces gas supplied via a piping into the inner space of the heat processing furnace via a gas supply inlet of the heat processing furnace. The apparatus effects the heat processing on the substrate placed within a gas flow formed in the inner space. The gas introduction unit includes a first gas introduction chamber, which receives the gas supplied via the piping for reducing a flow velocity of the gas, and a second gas introduction chamber, which is in communication with the first gas introduction chamber, is formed over at least one of outer surfaces of the top furnace wall and the bottom furnace wall at the one end of the heat processing furnace, and extends in a belt-like form through an entire width of the heat processing furnace. A portion of the top furnace wall and/or bottom furnace wall, over which the second gas introduction chamber is formed, has a nozzle opening, which covers the entire width of the heat processing furnace for flowing the gas from the second gas introduction chamber into the inner space in a direction perpendicular to the top furnace wall and/or bottom furnace wall. The gas supply port and the first gas introduction chamber are preferably separated from each other by a partition which forms a portion of a cylindrical or spherical surface and has a plurality of through-holes.
Abstract:
A vertical heat treatment apparatus has a reaction furnace, gas-introducing mechanism, a gas-exhausting mechanism, and temperature-sensing means. The reaction furnace is made up of a reaction tube and a heating mechanism. The reaction tube contains a plurality of objects which are to be treated and which are arranged at predetermined intervals. The heating mechanism is arranged outside of the reaction tube. The gas-introducing means introduces a gas into the reaction tube, and the gas-exhausting mechanism exhausts the gas from the reaction tube. The temperature-sensing mechanism includes a guide pipe which passes through the side wall of the reaction tube and which extends along the inner wall of the reaction tube in the longitudinal direction of the reaction tube. One end of the guide pipe is closed and is located inside the reaction tube, while the other end thereof is open and is located outside of the reaction tube. A bendable temperature-measuring device is inserted in the guide pipe. With this structure, the vertical heat treatment apparatus can perform treatment while simultaneously measuring the temperature in the interior of the reaction tube.
Abstract:
A gas distribution system 140 includes a gas distribution chamber 142 and a gas distributor 154. Gas distribution chamber 142 includes an open end 144 and a closed end 146. A workpiece 148 is disposed adjacent closed end 146. Gas distributor 154 includes an outer collar 156 and an inner collar 158. Inner collar 158 has a continuously increasing cross-sectional diameter from a first predetermined point 160 to a second predetermined point 162. Gases are introduced through an inlet tube 150 disposed through an aperture in a platform 152 into the interior of inner collar 158 and toward workpiece 148. A diverter 164 diverts incoming gases from inlet tube 150.