Abstract:
A semiconductor device may include a substrate, an electrode structure including electrodes stacked on the substrate, an upper semiconductor pattern penetrating at least a portion of the electrode structure, and a lower semiconductor pattern between the substrate and the upper semiconductor pattern. The upper semiconductor pattern includes a gap-filling portion and a sidewall portion extending from the gap-filling portion in a direction away from the substrate, the lower semiconductor pattern includes a concave top surface, the gap-filling portion fills a region enclosed by the concave top surface, a top surface of the gap-filling portion has a rounded shape that is deformed toward the substrate, and a thickness of the sidewall portion is less than a thickness of the gap-filling portion.
Abstract:
A semiconductor memory device may include: a stacking structure including a plurality of insulating layers and a plurality of gate electrodes alternately stacked on a substrate; a lower semiconductor pattern that protrudes from the top of the substrate; a vertical insulating pattern that extends in a vertical direction from the substrate and penetrates the stacking structure; and a vertical channel pattern on the inner surface of the vertical insulating pattern and contacting the lower semiconductor pattern, wherein an upper part of the lower semiconductor pattern includes a recess region including a curve-shaped profile, and in the recess region, the outer surface of a lower part of the vertical channel pattern contacts the lower semiconductor pattern along a curve of the recess region.
Abstract:
A semiconductor memory device and a method of fabricating the same. The device includes a plurality of gates vertically stacked on a top surface of a substrate with an epitaxial layer formed in the substrate, a vertical channel vertically penetrating the gates to be electrically connected to the epitaxial layer, and a memory layer provided between the vertical channel and the gates. The epitaxial layer has a top surface positioned at a level between a bottom surface of the lowermost one of the gates and the top surface of the substrate.
Abstract:
Provided is a semiconductor device including a lower layer structure on a substrate, the lower layer structure having different thicknesses on first and second regions of the substrate, the lower layer structure including an electrode layer at a top and an insulating layer thereunder, an etch stop layer on the lower layer structure, an upper layer structure on the etch stop layer, the etch stop layer having an etch selectivity to the upper and lower layer structures, first and second contact plugs filling first and second openings defined in the upper layer structure and the etch stop layer on the first and second regions, respectively, and contacting corresponding electrode layers of the lower layer structure, respectively, such that one of the first and second contact plugs downwardly extends further with respect to a bottom of the etch stop layer than the other one of the first and second contact plugs.
Abstract:
A semiconductor memory device may include: a stacking structure including a plurality of insulating layers and a plurality of gate electrodes alternately stacked on a substrate; a lower semiconductor pattern that protrudes from the top of the substrate; a vertical insulating pattern that extends in a vertical direction from the substrate and penetrates the stacking structure; and a vertical channel pattern on the inner surface of the vertical insulating pattern and contacting the lower semiconductor pattern, wherein an upper part of the lower semiconductor pattern includes a recess region including a curve-shaped profile, and in the recess region, the outer surface of a lower part of the vertical channel pattern contacts the lower semiconductor pattern along a curve of the recess region.
Abstract:
Provided is a semiconductor device including a lower layer structure on a substrate, the lower layer structure having different thicknesses on first and second regions of the substrate, the lower layer structure including an electrode layer at a top and an insulating layer thereunder, an etch stop layer on the lower layer structure, an upper layer structure on the etch stop layer, the etch stop layer having an etch selectivity to the upper and lower layer structures, first and second contact plugs filling first and second openings defined in the upper layer structure and the etch stop layer on the first and second regions, respectively, and contacting corresponding electrode layers of the lower layer structure, respectively, such that one of the first and second contact plugs downwardly extends further with respect to a bottom of the etch stop layer than the other one of the first and second contact plugs.
Abstract:
A three dimensional semiconductor memory device includes a vertical channel structure extending in a vertical direction on a substrate; interlayer insulating layers surrounding the vertical channel structure and being stacked in the vertical direction on the substrate, gate electrodes surrounding the vertical channel structure and being disposed between the interlayer insulating layers, corners of the gate electrodes adjacent to the vertical channel structure being rounded, and auxiliary gate insulating patterns disposed between the gate electrodes and the vertical channel structure, wherein a side surface of the auxiliary gate insulating pattern is substantially coplanar with a side surface of the interlayer insulating layer in the vertical direction on the substrate.