Abstract:
Provided are a paste material, a method of forming the paste material, a wiring member formed from the paste material, and an electronic device including the wiring member. The paste material may include a plurality of liquid metal particles and a polymer binder. The paste material may further include a plurality of nanofillers. At least some of the plurality of nanofillers may each have an aspect ratio equal to or greater than about 3. A content of the plurality of liquid metal particles may be greater than a content of the polymer binder and may be greater than a content of the plurality of nanofillers. The wiring member may be formed by using the paste material, and the wiring member may be used in various electronic devices.
Abstract:
Example embodiments relate to a method of fabricating a graphene nano-mesh by selectively growing an oxide layer on a defect site of a graphene layer and etching the oxide layer to form the graphene nano-mesh. The method includes forming a graphene layer on a catalyst layer, forming an oxide layer on a defect site of the graphene layer, forming the graphene nano-mesh including a plurality of openings by etching the oxide layer, and transferring, after removing the catalyst layer, the graphene nano-mesh onto a substrate.
Abstract:
A chalcogen compound layer exhibiting ovonic threshold switching characteristics, a switching device, a semiconductor device, and/or a semiconductor apparatus including the same are provided. The switching device and/or the semiconductor device may include two or more chalcogen compound layers having different energy band gaps. Alternatively, the switching device and/or semiconductor device may include a chalcogen compound layer having a concentration gradient of an element of boron (B), aluminum (Al), scandium (Sc), manganese (Mn), strontium (Sr), and/or indium (In) in a thickness direction thereof. The switching device and/or a semiconductor device may exhibit stable switching characteristics while having a low off-current value (leakage current value).
Abstract:
Provided are an image sensor and a method of manufacturing the same. The image sensor may include a plurality of light detection elements arranged to correspond to a plurality of pixel regions, a color filter layer on the plurality of light detection elements and including a plurality of color filters arranged to correspond to the plurality of light detection elements, and a photodiode device portion on the color filter layer. The photodiode device portion may have curved structures. The photodiode device portion may include an organic material-based photodiode layer, a first electrode between the photodiode layer and the color filter layer, and a second electrode on the photodiode layer. The photodiode device portion may have curved convex structures respectively corresponding to the plurality of color filters.
Abstract:
Provided are meta-surface optical device and methods of manufacturing the same. The meta-surface optical device may include a meta-surface arranged on a region of a substrate and a light control member arranged around the meta-surface. The light control member may be arranged on or below the substrate. A material layer formed of the same material used to form the meta-surface may be disposed between the light control member and the substrate. Also, the meta-surface may be a first meta-surface arranged on an upper surface of the substrate, and a second meta-surface may be arranged on a bottom surface of the substrate. Also, the meta-surface may include a first meta-surface and at least one second meta-surface may formed on the first meta-surface, and the light control member may be arranged around the at least one second meta-surface.
Abstract:
Nonreciprocal optical transmission devices and optical apparatuses including the nonreciprocal optical transmission devices are provided. A nonreciprocal optical transmission device includes an optical input portion, an optical output portion, and an intermediate connecting portion interposed between the optical input portion and the optical output portion, and comprising optical waveguides. A complex refractive index of any one or any combination of the optical waveguides changes between the optical input portion and the optical output portion, and a transmission direction of light through the nonreciprocal optical transmission device is controlled by a change in the complex refractive index.
Abstract:
A transistor includes a substrate, a two-dimensional material including at least one layer that is substantially vertically aligned on the substrate such that an edge of the layer is on the substrate and the layer extends substantially vertical to the substrate, a source electrode and a drain electrode connected to opposite ends of the two-dimensional material, a gate insulation layer on the two-dimensional material between the source electrode and the drain electrode, and a gate electrode on the gate insulation layer. Each layer includes a semiconductor having a two-dimensional crystal structure.
Abstract:
An apparatus for analyzing an active material of a secondary battery may include: a first electrode; a piezoelectric layer on the first electrode; a second electrode on the piezoelectric layer, configured to provide a voltage having a polarity opposite to a polarity of the first electrode; and/or an insulating layer on the second electrode and including a through hole exposing a portion of the second electrode. A method of analyzing an active material of a secondary battery may include: disposing an active material in a through hole of a bulk acoustic resonator, in which a first electrode, a piezoelectric layer, a second electrode, and an insulating layer are stacked; measuring a resonance frequency of the resonator by applying an electric signal to the first and second electrodes of the resonator; and/or measuring a weight of the active material in the through hole, based on the measured resonance frequency.
Abstract:
Provided are a chalcogenide-based memory device capable of implementing multi-level memory and an electronic apparatus including the chalcogenide-based memory device. The memory device includes a first electrode and a second electrode arranged to be spaced apart from each other, and a memory layer provided between the first electrode and the second electrode and including a plurality of memory material layers having different threshold voltages from each other. Each of the plurality of memory material layers includes a chalcogenide-based material, has an ovonic threshold switching (OTS) characteristic, and is configured to have a threshold voltage varying depending on a polarity and intensity of an applied voltage.
Abstract:
Provided are a memory device, a manufacturing method thereof, and an electronic apparatus including the memory device. The memory device may include a plurality of first conductors arranged apart from each other and perpendicular to a substrate, a second conductor extending perpendicular to the substrate, a chalcogenide layer extending perpendicular to the substrate between the plurality of first conductors and the second conductor, and a plurality of first diffusion barrier layers selectively arranged only on the plurality of first conductors between the plurality of first conductors and the chalcogenide layer. The plurality of first diffusion barrier layers each may include a carbon-based material.