Abstract:
The present disclosure relates to a memory cell comprising a vertical selection gate extending in a trench made in a substrate, a floating gate extending above the substrate, and a horizontal control gate extending above the floating gate, wherein the floating gate also extends above a portion of the vertical selection gate over a non-zero overlap distance. Application mainly to the production of a split gate memory cell programmable by hot-electron injection.
Abstract:
An integrated MOS transistor is formed in a substrate. The transistor includes a gate region buried in a trench of the substrate. The gate region is surrounded by a dielectric region covering internal walls of the trench. A source region and drain region are situated in the substrate on opposite sides of the trench. The dielectric region includes an upper dielectric zone situated at least partially between an upper part of the gate region and the source and drain regions. The dielectric region further includes a lower dielectric zone that is less thick than the upper dielectric zone and is situated between a lower part of the gate region and the substrate.
Abstract:
The present disclosure relates to a method of making a memory on semiconductor substrate, comprising: at least one data line, at least one selection line, at least one reference line, at least one memory cell comprising a select transistor having a control gate connected to the selection line, a first conduction terminal connected to a variable impedance element, the select transistor and the variable impedance element coupling the reference line to the data line, the select transistor comprising an embedded vertical gate produced in a trench formed in the substrate, and a channel region opposite a first face of the trench, between a first deep doped region and a second doped region on the surface of the substrate coupled to the variable impedance element.
Abstract:
An integrated MOS transistor is formed in a substrate. The transistor includes a gate region buried in a trench of the substrate. The gate region is surrounded by a dielectric region covering internal walls of the trench. A source region and drain region are situated in the substrate on opposite sides of the trench. The dielectric region includes an upper dielectric zone situated at least partially between an upper part of the gate region and the source and drain regions. The dielectric region further includes a lower dielectric zone that is less thick than the upper dielectric zone and is situated between a lower part of the gate region and the substrate.
Abstract:
An integrated circuit includes a substrate, an interconnection part, and an isolating region located between the substrate and the interconnection part. A decoy structure is located within the isolating region and includes a silicided sector which is electrically isolated from the substrate.
Abstract:
An integrated circuit includes a substrate, an interconnection part, and an isolating region located between the substrate and the interconnection part. A decoy structure is located within the isolating region and includes a silicided sector which is electrically isolated from the substrate.
Abstract:
A MOS transistor is produced on and in an active zone which includes a source region and a drain region. The active zone is surrounded by an insulating region. A conductive gate region of the transistor has two flanks which extend transversely to a source-drain direction, and the conductive gate region overlaps two opposite edges of the active zone act overlap zones. The conductive gate region includes, at a location of at least one overlap zone, at least one conductive tag which projects from at least one flank at a foot of the conductive gate region. The conductive tag covers a part of the active zone and a part of the insulating region.
Abstract:
A MOS transistor located in and on a semiconductor substrate has a drain region, a source region and a conductive gate region. The conductive gate region includes a first conductive gate region that is insulated from the semiconductor substrate and a second conductive gate region that is insulated from and located above the first conductive gate region. A length of the first conductive gate region, measured in the drain-source direction, is greater than a length of the second conductive gate region, also measured in the drain-source direction. The first conductive gate region protrudes longitudinally in the drain-source direction beyond the second conductive gate region at least on one side of the second conductive gate region so as to extend over at least one of the source and drain regions.
Abstract:
A non-volatile memory cell includes a selection transistor having an insulated selection gate embedded in a semiconducting substrate region. A semiconducting source region contacts a lower part of the insulated selection gate. A state transistor includes a floating gate having an insulated part embedded in the substrate region above an upper part of the insulated selection gate, a semiconducting drain region, and a control gate insulated from the floating gate and located partially above the floating gate. The source region, the drain region, the substrate region, and the control gate are individually polarizable.
Abstract:
A non-volatile memory cell includes a selection transistor having an insulated selection gate embedded in a semiconducting substrate region. A semiconducting source region contacts a lower part of the insulated selection gate. A state transistor includes a floating gate having an insulated part embedded in the substrate region above an upper part of the insulated selection gate, a semiconducting drain region, and a control gate insulated from the floating gate and located partially above the floating gate. The source region, the drain region, the substrate region, and the control gate are individually polarizable.