Abstract:
A semiconductor device for a one-time programmable (OTP) memory according to some examples of the disclosure includes a gate, a dielectric region below the gate, a source terminal below the dielectric region and offset to one side, a drain terminal below the dielectric region and offset to an opposite side from the source terminal, a drain side charge trap in the dielectric region capable of programming the semiconductor device, and a source side charge trap in the dielectric region opposite the drain side charge trap and capable of programming the semiconductor device.
Abstract:
Asymmetric gated fin field effect transistor (FET) (finFET) diodes are disclosed. In one aspect, an asymmetric gated finFET diode employs a substrate that includes a well region of a first-type and a fin disposed in a direction. A first source/drain region is employed that includes a first-type doped material disposed in the fin having a first length in the direction. A second source/drain region having a second length in the direction larger than the first length is employed that includes a second-type doped material disposed in the fin. A gate region is disposed between the first source/drain region and the second source/drain region and has a third length in the direction that is larger than the first length and larger than the second length. The wider gate region increases a length of a depletion region of the asymmetric gated finFET diode, which reduces current leakage while avoiding increase in area.
Abstract:
An apparatus includes a static random-access memory and circuitry configured to initiate a corrective action associated with the static random-access memory. The corrective action may be initiated based on a number of static random-access memory cells that have a particular state responsive to a power-up of the static random-access memory.
Abstract:
A volatile and one-time program (OTP) compatible asymmetric memory cell may include a first pull-up transistor having a first threshold voltage. The asymmetric memory cell may also include a second pull-up transistor having a second threshold voltage that differs from the first threshold voltage. The asymmetric memory cell may further include a switch coupled to a well of the first pull-up transistor and the second pull-up transistor to alternate between a program voltage (Vpg) and a power supply voltage. The asymmetric memory cell may also include a peripheral switching circuit to control programming of the asymmetric memory cell.
Abstract:
In a one-time-programming (OTP) memory cell, dual-voltage sensing is utilized to determine whether the memory cell has experienced a non/soft breakdown or a hard breakdown. The drain current of the memory cell is read when the gate voltage is at a first predetermined voltage, and if the read drain current is greater than a predetermined current level, then a hard breakdown is detected. One or more additional readings of the current may be obtained to determine that a hard breakdown has occurred. If the read drain current is less than the predetermined current level, then a non/soft breakdown is detected. The threshold voltage of the memory cell may be shifted, and a second reading of the drain current may be obtained when the gate voltage is at a second predetermined voltage in case the memory cell experiences a non/soft breakdown.
Abstract:
Digital compute-in-memory (DCIM) bit cell circuit layouts and DCIM array circuits for multiple operations per column are disclosed. A DCIM bit cell array circuit including DCIM bit cell circuits comprising exemplary DCIM bit cell circuit layouts disposed in columns is configured to evaluate the results of multiple multiply operations per clock cycle. The DCIM bit cell circuits in the DCIM bit cell circuit layouts each couples to one of a plurality of column output lines in a column. In this regard, in each cycle of a system clock, each of the plurality of column output lines receives a result of a multiply operation of a DCIM bit cell circuit coupled to the column output line. The DCIM bit cell array circuit includes digital sense amplifiers coupled to each of the plurality of column output lines to reliably evaluate a result of a plurality of multiply operations per cycle.
Abstract:
Compute-in-memory (CIM) bit cell array circuits include CIM bit cell circuits for multiply-accumulate operations. The CIM bit cell circuits include a memory bit cell circuit for storing a weight data in true and complement form. The CIM bit cell circuits include a true pass-gate circuit and a complement pass-gate circuit for generating a binary product of the weight data and an activation input on a product node. An RWL circuit couples the product node to a ground voltage for initialization. The CIM bit cell circuits also include a plurality of consecutive gates each coupled to at least one of the memory bit cell circuit, the true pass-gate circuit, the complement pass-gate circuit, and the RWL circuit. Each of the CIM bit cell circuits in the CIM bit cell array circuit is disposed in an orientation of a CIM bit cell circuit layout including the RWL circuit.
Abstract:
An apparatus includes a metal gate, a substrate material, and an oxide layer between the metal gate and the substrate material. The oxide layer includes a hafnium oxide layer contacting the metal gate and a silicon dioxide layer contacting the substrate material and contacting the hafnium oxide layer. The metal gate, the substrate material, and the oxide layer are included in a one-time programmable (OTP) memory device. The OTP memory device includes a transistor. A non-volatile state of the OTP memory device is based on a threshold voltage shift of the OTP memory device.
Abstract:
An OTP memory array includes a plurality of differential P-channel metal oxide semiconductor (PMOS) OTP memory cells programmable and readable in predetermined states of program and read operations, and is capable of providing sufficient margins against global process variations and temperature variations while being compatible with standard logic fin-shaped field effect transistor (FinFET) processes to obviate the need for additional masks and costs associated with additional masks.
Abstract:
A method of operation of a static random access memory (SRAM) storage element includes programming a value to the SRAM storage element prior to a power-down event. The method further includes, in response to a power-on event at the SRAM storage element after the power-down event, increasing a supply voltage of the SRAM storage element and sensing a state of the SRAM storage element to determine the value programmed to the SRAM storage element prior to the power-down event. In a particular example, an apparatus includes the SRAM storage element and control circuitry coupled to the SRAM storage element. The control circuitry may be configured to program the value to the SRAM storage element, to increase the supply voltage, and to sense the state of the SRAM storage element to determine the value programmed to the SRAM storage element prior to the power-down event.