Abstract:
Some implementations provide a semiconductor device that includes a first substrate, a die coupled to the first substrate, and a set of solder balls coupled to the first substrate. The set of solder balls is configured to provide an electrical connection between the die and a second substrate. The semiconductor device also includes at least one decoupling capacitor coupled to the die through the first substrate. The at least one decoupling capacitor is configured to provide an electrical connection between the die and the second substrate. The at least one decoupling capacitor is coupled to the first substrate such that the at least one decoupling capacitor is positioned between the first substrate and the second substrate. In some implementations, the second substrate is a printed circuit board (PCB). In some implementations, the first substrate is a first package substrate, and the second substrate is a second package substrate.
Abstract:
A toroid inductor includes a plurality of first turns configured in a first ring shape and a plurality of second turns configured in a second ring shape. The plurality of first turns includes a plurality of first upper interconnects, a plurality of first lower interconnects, and a plurality of first vias coupled to the plurality of first upper interconnects and to the plurality of first lower interconnects. The plurality of second turns is at least partially intertwined with the plurality of first turns. The plurality of second turns includes a plurality of second upper interconnects, a plurality of second lower interconnects, and a plurality of second vias coupled to the plurality of second upper interconnects and to the plurality of second lower interconnects.
Abstract:
An integrated circuit (IC) module that includes an integrated circuit (IC) package, a plurality of first solder interconnects coupled to the IC package, an interposer coupled to the IC package through the plurality of first solder interconnects a plurality of second solder interconnects coupled to the interposer; and a printed circuit board (PCB) coupled to the interposer through the plurality of second solder interconnects. The interposer includes an encapsulation layer, a first passive component at least partially embedded in the encapsulation layer, and a plurality of interconnects coupled to the first passive component. The encapsulation layer includes a mold and/or an epoxy fill. The first passive component is configured to operate as an electronic voltage regulator (EVR) for the IC module. In some implementations, the interposer is a fan out interposer.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.
Abstract:
Some novel features pertain to an integrated device that includes a first metal layer and a second metal layer. The first metal layer includes a first set of regions. The first set of regions includes a first netlist structure for a power distribution network (PDN) of the integrated device. The second metal layer includes a second set of regions. The second set of regions includes a second netlist structure of the PDN of the integrated device. In some implementations, the second metal layer further includes a third set of regions comprising the first netlist structure for the PDN of the integrated device. In some implementations, the first metal layer includes a third set of regions that includes a third netlist structure for the PDN of the integrated device. The third set of regions is non-overlapping with the first set of regions of the first metal layer.
Abstract:
Some implementations provide a semiconductor device that includes a first substrate, a die coupled to the first substrate, and a set of solder balls coupled to the first substrate. The set of solder balls is configured to provide an electrical connection between the die and a second substrate. The semiconductor device also includes at least one decoupling capacitor coupled to the die through the first substrate. The at least one decoupling capacitor is configured to provide an electrical connection between the die and the second substrate. The at least one decoupling capacitor is coupled to the first substrate such that the at least one decoupling capacitor is positioned between the first substrate and the second substrate. In some implementations, the second substrate is a printed circuit board (PCB). In some implementations, the first substrate is a first package substrate, and the second substrate is a second package substrate.
Abstract:
Flexible under-bump metallization sizes and patterning, and related integrated circuit packages and fabrication methods are disclosed. First under-bump metallizations (UBMs) of a first, larger size and pitch are provided in the die and coupled to corresponding metal interconnects in the package substrate. One or more second UBMs of a second, reduced size UBMs can also be located in the core area of the die. This provides greater flexibility in the design and layout of the die, because different circuits within the die (e.g., I/O related circuits) may only require coupling to smaller size UBMs for performance requirements and thus can be more flexibility located in the die. Also, to further reduce pitch of the second, smaller size UBMs, one or more of the second, smaller size UBMs can be formed as oblong-shaped UBMs, which can still maintain a minimum separation based on metal interconnect pitch limitations in the package substrate.
Abstract:
A semiconductor die (“die”) employing repurposed seed layer for forming additional signal paths to a back end-of-line (BEOL) structure of the die, and related integrated circuit (IC) packages and fabrication methods. A seed layer is repurposed that was disposed adjacent the BEOL interconnect structure to couple an under bump metallization (UBM) interconnect without a coupled interconnect bump thus forming an unraised interconnect bump, to a UBM interconnect that has a raised interconnect bump. To couple the unraised interconnect bump to the raised interconnect bump, the seed layer is selectively removed during fabrication to leave a portion of the seed layer repurposed that couples the UBM interconnect that does not have an interconnect bump to the UBM interconnect that has a raised interconnect bump. Additional routing paths can be provided between raised interconnect bumps to the BEOL interconnect structure through coupling of UBM interconnects to an unraised interconnect bump.
Abstract:
Multiple (multi-) die integrated circuit (IC) packages for supporting higher connection density, and related fabrication methods. The multi-die IC package includes split dies that provided in respective die packages that are stacked on top of each other to conserve package area. To support signal routing, including through-package signal routing that extends through the die package, each die package includes vertical interconnects disposed adjacent to their respective dies and coupled to a respective package substrate (and interposer substrate if provided) in the package substrate. In this manner, as an example, through-silicon-vias (TSVs) are not required to be fabricated in the multi-die IC package that extend through the dies themselves to provide signal routing between the respective die packages. In another example, space created between adjacent interposer substrates of stacked die packages, as stood off from each other through the interconnect bumps, provides an area for heat dissipation.
Abstract:
An integrated circuit (IC) package is described. The IC package includes a die, having a pad layer structure on back-end-of-line layers on a substrate. The die also includes a metallization routing layer on the pad layer structure, and a first under bump metallization layer on the metallization routing layer. The IC package also includes a patterned seed layer on a surface of the die to contact the first under bump metallization layer. The IC package further includes a first package bump on the first under bump metallization layer.