Abstract:
An integrated circuit device that includes a package substrate and a die coupled to the package substrate. The package substrate includes at least one dielectric layer, a first stack of first interconnects in the at least one dielectric layer, and a second interconnect formed on at least one side portion of the at least one dielectric layer. The first stack of first interconnects is configured to provide a first electrical path for a non-ground reference signal, where the first stack of first interconnects is located along at least one side of the package substrate. The second interconnect is configured to provide a second electrical path for a ground reference signal.
Abstract:
Some implementations provide an integrated device that includes a capacitor and an inductor. The inductor is electrically coupled to the capacitor. The inductor and the capacitor are configured to operate as a filter for an electrical signal in the integrated device. The inductor includes a first metal layer of a printed circuit board (PCB), a set of solder balls coupled to the PCB, and a second metal layer in a die. In some implementations, the capacitor is located in the die. In some implementations, the capacitor is a surface mounted passive device on the PCB. In some implementations, the first metal layer is a trace on the PCB. In some implementations, the inductor includes a third metal layer in the die. In some implementations, the second metal layer is an under bump metallization (UBM) layer of the die, and the third metal is a redistribution layer of the die.
Abstract:
Some features pertain to an integrated device (e.g., package-on-package (PoP) device) that includes a substrate, a first die, a first encapsulation layer, a first redistribution portion, a second die, a second encapsulation layer, and a second redistribution portion. The substrate includes a first surface and a second surface. The substrate includes a capacitor. The first die is coupled to the first surface of the substrate. The first encapsulation layer encapsulates the first die. The first redistribution portion is coupled to the first encapsulation. The second die is coupled to the second surface of the substrate. The second encapsulation layer encapsulates the second die. The second redistribution portion is coupled to the second encapsulation layer.
Abstract:
Some implementations provide a semiconductor device that includes a first substrate, a die coupled to the first substrate, and a set of solder balls coupled to the first substrate. The set of solder balls is configured to provide an electrical connection between the die and a second substrate. The semiconductor device also includes at least one decoupling capacitor coupled to the die through the first substrate. The at least one decoupling capacitor is configured to provide an electrical connection between the die and the second substrate. The at least one decoupling capacitor is coupled to the first substrate such that the at least one decoupling capacitor is positioned between the first substrate and the second substrate. In some implementations, the second substrate is a printed circuit board (PCB). In some implementations, the first substrate is a first package substrate, and the second substrate is a second package substrate.
Abstract:
An embedded layered inductor is provided that includes a first inductor layer and a second inductor layer coupled to the first inductor layer. The first inductor layer comprises a patterned metal layer that may also be patterned to form pads. The second inductor layer comprises metal deposited in a dielectric layer adjacent the patterned metal layer.
Abstract:
An embedded layered inductor is provided that includes a first inductor layer and a second inductor layer coupled to the first inductor layer. The first inductor layer comprises a patterned metal layer that may also be patterned to form pads. The second inductor layer comprises metal deposited in a dielectric layer adjacent the patterned metal layer.
Abstract:
Some novel features pertain to a semiconductor device that includes a substrate, a first cavity that traverses the substrate. The first cavity is configured to be occupied by a interconnect material (e.g., solder ball). The substrate also includes a first metal layer coupled to a first side wall of the first cavity. The substrate further includes a first integrated passive device (IPD) on a first surface of the substrate, the first IPD coupled to the first metal layer. In some implementations, the substrate is a glass substrate. In some implementations, the first IPD is one of at least a capacitor, an inductor and/or a resistor. In some implementations, the semiconductor device further includes a second integrated passive device (IPD) on a second surface of the substrate. The second IPD is coupled to the first metal layer.
Abstract:
A low-profile passive-on-package is provided that includes a plurality of recesses that receive corresponding interconnects. Because of the receipt of the interconnects in the recesses, the passive-on-package has a height that is less than a sum of a thickness for the substrate and an interconnect height or diameter.
Abstract:
Some implementations provide an integrated device (e.g., semiconductor device) that includes a substrate and an inductor in the substrate. In some implementations, the inductor is a solenoid inductor. The inductor includes a set of windings. The set of windings has an inner perimeter. The set of windings includes a set of interconnects and a set of vias. The set of interconnects and the set of vias are located outside the inner perimeter of the set of windings. In some implementations, the set of windings further includes a set of capture pads. The set of interconnects is coupled to the set of vias through the set of capture pads. In some implementations, the set of windings has an outer perimeter. The set of pads is coupled to the set of interconnects such that the set of pads is at least partially outside the outer perimeter of the set of windings.
Abstract:
A system includes a first connector coupled to a first surface of a substrate. The first connector enables the system to be electrically coupled to a first device external to the substrate. The system includes a second connector coupled to a second surface of the substrate. The system also includes a plurality of conductive vias extending through the substrate from the first surface to the second surface. The plurality of conductive vias surrounds the first connector and the second connector. The plurality of conductive vias is electrically coupled together to form a toroidal inductor. A first lead of the toroidal inductor is electrically coupled to the first connector. A second lead of the toroidal inductor is electrically coupled to the second connector.