Abstract:
A field effect transistor is provided. The transistor may include a source electrode and a drain electrode provided spaced apart from each other on a substrate and a ‘+’-shaped gate electrode provided on a portion of the substrate located between the source and drain electrodes.
Abstract:
Provided are an electronic chip and a method of fabricating the same. The semiconductor chip may include a substrate, an active device integrated on the substrate, a lower interlayered insulating layer covering the resulting structure provided with the active device, a passive device provided on the lower interlayered insulating layer, an upper interlayered insulating layer covering the resulting structure provided with the passive device, and a ground electrode provided on the upper interlayered insulating layer. The upper interlayered insulating layer may be formed of a material, whose dielectric constant may be higher than that of the lower interlayered insulating layer.
Abstract:
A high electron mobility transistor includes a T-type gate electrode disposed on a substrate between source and drain electrodes and insulating layers disposed between the substrate and the T-type gate electrode. The insulating layers include first, second, and third insulating layers. The third insulating layer is disposed between the substrate and a head portion of the T-type gate electrode such that a portion of the third insulating layer is in contact with a foot portion of the T-type gate electrode. The second insulating layer is disposed between the substrate and the head portion of the T-type gate electrode to be in contact with the third insulating layer. The first insulating layer and another portion of the third insulating layer are sequentially stacked between the substrate and the head portion of the T-type gate electrode to be in contact with the second insulating layer.
Abstract:
A semiconductor device may include a substrate having a lower via-hole, an epitaxial layer having an opening exposing a top surface of the substrate, a semiconductor chip disposed on the top surface of the substrate and including first, second, and third electrodes, an upper metal layer connected to the first electrode, a supporting substrate disposed on the upper metal layer and having an upper via-hole, an upper pad disposed on the substrate and extending into the upper via-hole, a lower pad connected to the second electrode in the opening, and a lower metal layer covering a bottom surface of the substrate and connected to the lower pad through the lower via-hole.
Abstract:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
Abstract:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
Abstract:
Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced. The method of manufacturing a field effect type compound semiconductor device includes: stacking an active layer and an ohmic layer on a substrate and forming a first oxide layer on the ohmic layer; forming a mesa region in predetermined regions of the first oxide layer, the ohmic layer, and the active layer; planarizing the mesa region after forming a nitride layer by evaporating a nitride on the mesa region; forming an ohmic electrode on the first oxide layer; forming a minute gate resist pattern after forming a second oxide layer on a semiconductor substrate in which the ohmic electrode is formed and forming a minute gate pattern having a under-cut shaped profile by dry-etching the first oxide layer, the nitride layer, and the second oxide layer; forming a gate recess region by forming a head pattern of a gamma gate electrode on the semiconductor substrate; and forming the gamma gate electrode by evaporating refractory metal on the semiconductor substrate in which the gate recess region is formed.
Abstract:
Provided is a semiconductor device testing apparatus including a first socket configured to load a package, on which a semiconductor device to be tested may be mounted, and a second socket coupled to the first socket. The first socket may include an upper part including a hole configured to accommodate the package and a terminal pad provided at both side edges of the hole to hold input and output terminals of the package, and a lower part including a heating room, in which a heater and a temperature sensing part may be provided, the heater being configured to heat the semiconductor device and the temperature sensing part being configured to measure temperature of the semiconductor device. The second socket may include a probe card with a pattern that may be configured to receive test signals from an external power source.
Abstract:
Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced. The method of manufacturing a field effect type compound semiconductor device includes: stacking an active layer and an ohmic layer on a substrate and forming a first oxide layer on the ohmic layer; forming a mesa region in predetermined regions of the first oxide layer, the ohmic layer, and the active layer; planarizing the mesa region after forming a nitride layer by evaporating a nitride on the mesa region; forming an ohmic electrode on the first oxide layer; forming a minute gate resist pattern after forming a second oxide layer on a semiconductor substrate in which the ohmic electrode is formed and forming a minute gate pattern having a under-cut shaped profile by dry-etching the first oxide layer, the nitride layer, and the second oxide layer; forming a gate recess region by forming a head pattern of a gamma gate electrode on the semiconductor substrate; and forming the gamma gate electrode by evaporating refractory metal on the semiconductor substrate in which the gate recess region is formed.
Abstract:
Disclosed is an automatic gain control feedback amplifier that can arbitrarily control a gain even when a difference in input signal is large. The automatic gain control feedback amplifier includes: an amplification circuit unit configured to amplify voltage input from an input terminal and output the amplified voltage to an output terminal; a feedback circuit unit connected between the input terminal and the output terminal and including a feedback resistor unit of which a total resistance value is determined by one or more control signals and a feedback transistor connected to the feedback resistor unit in parallel; and a bias circuit unit configured to supply predetermined bias voltage to the feedback transistor.