Abstract:
The present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening in the dielectric layer, providing a switching body in the opening, and providing a second conductive body in the opening.
Abstract:
A present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening, providing a switching body in the opening, the first conductive body and switching body filling the opening, and providing a second conductive body over the switching body. In an alternate embodiment, a second dielectric layer is provided over the first-mentioned dielectric layer, and the switching body is provided in an opening in the second dielectric layer.
Abstract:
In a method of fabricating a metal-insulator-metal (MIM) device, initially, a first electrode is provided. An oxide layer is provided on the first electrode, and a protective layer is provided on the oxide layer. An opening through the protective layer is provided to expose a portion of the oxide layer, and a portion of the first electrode underlying the exposed portion of the oxide layer is oxidized. A second electrode is provided in contact with the exposed portion of the oxide layer. In alternative embodiments, the initially provided oxide layer may be eliminated, and spacers of insulating material may be provided in the opening.
Abstract:
A method for fabrication and a structure of a self-aligned (crosspoint) memory device comprises lines (wires) in a first direction and in a second direction. The wires in the first direction are formed using a hard mask material that is resistant to the pre-selected etch processes used for creation of the lines in both the first and the second direction. Consequently, the hard mask material for the lines in the first direction form part of the memory stack.
Abstract:
The present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening in the dielectric layer, providing a switching body in the opening, and providing a second conductive body in the opening.
Abstract:
A memory architecture that employs one or more semiconductor PIN diodes is provided. The memory employs a substrate that includes a buried bit/word line and a PIN diode. The PIN diode includes a non-intrinsic semiconductor region, a portion of the bit/word line, and an intrinsic semiconductor region positioned between the non-intrinsic region and the portion of the bit/word line.
Abstract:
A memory architecture that employs one or more semiconductor PIN diodes is provided. The memory employs a substrate that includes a buried bit/word line and a PIN diode. The PIN diode includes a non-intrinsic semiconductor region, a portion of the bit/word line, and an intrinsic semiconductor region positioned between the non-intrinsic region and the portion of the bit/word line.
Abstract:
A method and structure for a memory cell comprising a phase change material; a heating element in thermal contact with the phase change material, wherein the heating element is adapted to induce a phase change in the phase change material; and electrical lines configured to pass current through the heating element, wherein the phase change material and the heating element are arranged in a configuration other than being electrically connected in series. The memory cell further comprises a sensing element in thermal contact with the phase change material, wherein the sensing element is adapted to detect a change in at least one physical property of the phase change material, wherein the sensing element is adapted to detect a change in a thermal conductivity of the phase change material.
Abstract:
A method for fabrication and a structure of a self-aligned (crosspoint) memory device comprises lines (wires) in a first direction and in a second direction. The wires in the first direction are formed using a hard mask material that is resistant to the pre-selected etch processes used for creation of the lines in both the first and the second direction. Consequently, the hard mask material for the lines in the first direction form part of the memory stack.
Abstract:
The present invention is a fiducial electron beam detector including an etron beam absorber layer having one or more apertures for transmitting an electron beam, and a conductive or semiconductive structure adapted to produce a current in response to an incident electron beam transmitted through an aperture. When electrons from the electron beam strike this structure, a flow of electrons is created which may be monitored using any of the known methods for detecting current flow. The present invention is also a fiducial electron beam detector including a first semiconductor layer for electron collection, a first responsive layer of essentially parallel lines of conductive material oriented in one direction, where these conductive lines are separated by nonconductive material, and each of the lines is adapted for producing a current responsive to an electron beam, a second semiconductor layer adapted for electron collection, and a second responsive layer of essentially parallel lines of conductive material oriented in another direction, where these conductive lines are separated by nonconductive material, and each of the fines is adapted for producing a current responsive to an electron beam. Diode layers separate each of the semiconductor and responsive layers, to restrict current flow to a single direction. The present invention is also a method for monitoring the position of an electron beam on a film, in an area wherein the beam can create a useful image on the film.