Abstract:
The present invention relates to new class of dimeric macrocycles capable of chelating paramagnetic metal ions, their chelated complexes with the paramagnetic metal ions and the use thereof as contrast agents, particularly suitable for Magnetic Resonance Imaging (MRI) analysis.
Abstract:
The present invention relates to a process for the preparation of a solid form of the gadobenate dimeglumine compound that comprises obtaining a solution of the said compound in a suitable solvent A wherein the amount by weight of the water optionally present in the solution is at most equal to or lower than the amount by weight of the gadobenate dimeglumine comprised in the solution and adding the obtained solution to an organic solvent B, acting as an appropriate antisolvent and favoring the formation of a solid form of the gadobenate dimeglumine that can be collected by filtration.
Abstract:
The present invention relates to a process for the preparation of aqueous solutions of [1-13C]-hyperpolarized carboxylate containing molecules of diagnostic interest that comprises parahydrogenating with molecular para-hydrogen unsaturated alkenyl or alkynyl esters of the concerned 13C-carboxylate molecules.
Abstract:
The present invention relates to the use of non-equivalent mobile protons belonging to NMR distinguishable steroisomers of a CEST agent in a ratiometric based CEST imaging procedure and to Lanthanide (III) complex compounds displaying at least two NMR-distinguishable steroisomers in solution useful as concentration independent CEST responsive agents.
Abstract:
The present invention relates to paramagnetic solid lipid nanoparticles (pSLNs) comprising an amphiphilic paramagnetic metal chelating moiety selected from: a diazepine derivative of Formula I and a tetraazocyclododecane derivative of Formula (II): being said chelating moiety complexed to a paramagnetic metal ion selected from the group consisting of: Gd(III), Mn(II), Cr(III), Cu(II), Fe(III), Pr(III), Nd(III), Sm(III), Tb(III), Yb(III), Dy(III), Ho(III) and Er(III), or salts thereof. The invention further relates to the process for preparation of said solid lipid nanoparticles comprising amphiphilic complexes of paramagnetic metals (pSLNs) and to the use of pSLNs as MRI contrast agents in the diagnostic field.
Abstract:
The present invention relates to novel substituted ethylenediaminetetraacetic acid bisamide derivatives, their complexes with Mn(II) ion and the use thereof as contrast agents for Magnetic Resonance Imaging (MRI) analysis.
Abstract:
The present invention relates to a method for the acetylation of an aqueous solution of lactic acid to (S)-2-acetyloxypropionic acid. The process comprises in particular removing water from the solution of lactic acid and reacting lactic acid with acetic anhydride in the presence of acetic acid.
Abstract:
A fluid delivery system may include a container that houses a medical fluid, a fluid pressurizing unit, and a fluid transfer set that transfers the medical fluid from the container to the fluid pressurizing unit. To validate the integrity and sterility of the fluid delivery system, the system may undergo testing protocols to evaluate the susceptibility of the system to pathogenic ingress, chemical degradation, and/or fluid cross-contamination between patient fluid delivery procedures. The testing protocols may help ensure that delivery system components used during multiple different fluid delivery procedures perform as well as if the components were replaced after each fluid delivery procedure.
Abstract:
The present invention discloses a solid lipid nanoparticle (SLN) comprising: a) a solid lipid core comprising at least a glyceride and/or at least a fatty acid; b) a mixture of amphiphilic components forming a shell around said core a); c) an alkaline-earth complex with a compound of formula I and/or II: d) at least a fluorescent dye selected from: a cyanine fluorescent dye and/or a polyetherocyclic compound selected from: coumarin, pyrano, quinoline, pyranoquinoline, indole and pyranoindole derivates in acid form or a pharmaceutically acceptable salt thereof. These nanoparticles allow a prolonged blood circulation half-life, show enhanced photostability and improved fluorescence signal. The dye is preserved from degradation and improves the fluorescent quantum yield.
Abstract:
New radical compounds, useful in the field of MRI imaging of formula (I). The radical compounds are in particular new triarylmethyl (“trityl”) radicals which can be used as polarizing agents for polarizing a molecule in the DNP process.