Abstract:
A plurality of semiconductor fins is formed on a surface of an insulator layer. Gate structures are then formed that are orientated perpendicular and straddle each semiconductor fin. A dielectric spacer is then formed on vertical sidewalls of each gate structure. Next, an etch is performed that removes exposed portions of each semiconductor fin and a portion of the insulator layer not protected by the dielectric spacers and the gate structures. The etch provides semiconductor fin portions that have exposed vertical sidewalls. A doped semiconductor material is then formed from each exposed vertical sidewall of each semiconductor fin portion, followed by an anneal which causes diffusion of dopants from the doped semiconductor material into each semiconductor fin portion and the formation of source/drain regions. The source/drain regions are present along the sidewalls of each semiconductor fin portion and are located beneath the dielectric spacers.
Abstract:
A method of forming a semiconductor device that includes forming a sacrificial gate structure on a channel portion of a fin structure, wherein the angle at the intersection of the sidewall of the sacrificial gate structure and an upper surface of the channel portion of the fin structure is obtuse. Epitaxial source and drain region structures are formed on a source region portion and a drain region portion of the fin structure. At least one dielectric material is formed on the sidewall of the sacrificial gate structure. The sacrificial gate structure may be removed to provide an opening to the channel portion of the fin structure. A function gate structure is formed in the opening. At least one angle defined by the intersection of a sidewall of the functional gate structure and an upper surface of the channel portion of the fin structure is obtuse.
Abstract:
A method of forming a semiconductor device that includes forming a silicon including fin structure and forming a germanium including layer on the silicon including fin structure. Germanium is then diffused from the germanium including layer into the silicon including fin structure to convert the silicon including fin structure to silicon germanium including fin structure.
Abstract:
Semiconductor devices having non-merged fin extensions. A semiconductor device includes fins formed in trenches in an insulator layer, each of the fins having a uniform crystal orientation and a fin cap in a source and drain region that extends vertically and laterally beyond the trench. The fin caps of the respective fins are separate from one another.
Abstract:
A method for manufacturing a semiconductor device includes forming a fin extending between first and second pads on a substrate, removing a central portion of the fin to create an opening between a first part of the fin extending from the first pad and a second part of the fin extending from the second pad, growing first and second epitaxial layers in the opening on a side of respective first and second parts of the fin, stopping the growth of the first and second epitaxial layers prior to merging, forming a silicide layer on the first and second pads, first and second parts of the fin and first and second epitaxial layers, wherein there is a gap between portions of the silicide layer on the first and second epitaxial layers in the opening, and depositing a dielectric layer on the silicide layer, filling in the gap.
Abstract:
A semiconductor structure includes a material stack located on a surface of a semiconductor substrate. The material stack includes, from bottom to top, a silicon germanium alloy portion that is substantially relaxed and defect-free and a semiconductor material pillar that is defect-free. A dielectric material structure surrounds sidewalls of the material stack and is present on exposed portions of the semiconductor substrate.
Abstract:
Techniques for forming nanostructured materials are provided. In one aspect of the invention, a method for forming nanotubes on a buried insulator includes the steps of: forming one or more fins in a SOI layer of an SOI wafer, wherein the SOI wafer has a substrate separated from the SOI layer by the buried insulator; forming a SiGe layer on the fins; annealing the SiGe layer under conditions sufficient to drive-in Ge from the SiGe layer into the fins and form a SiGe shell completely surrounding each of the fins; and removing the fins selective to the SiGe shell, wherein the SiGe shell which remains forms the nanotubes on the buried insulator. A nanotube structure and method of forming a nanotube device are also provided.
Abstract:
A method for semiconductor fabrication includes providing mask layers on opposite sides of a substrate, the substrate having one or more mandrels. Dummy spacers are formed along a periphery of the mask layers. A dummy gate structure is formed between the dummy spacers. The dummy spacers are removed to provide a recess. Low-k spacers are formed in the recess.
Abstract:
A finFET semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region further includes a condensed portion formed of a first semiconductor material and a second semiconductor material. The source/drain regions are formed of the first semiconductor material while excluding the second semiconductor material.
Abstract:
A method for semiconductor fabrication includes providing mask layers on opposite sides of a substrate, the substrate having one or more mandrels. Dummy spacers are formed along a periphery of the mask layers. A dummy gate structure is formed between the dummy spacers. The dummy spacers are removed to provide a recess. Low-k spacers are formed in the recess.