Abstract:
A deposit cleaning system for removing deposits from interior surfaces of ion sources and/or electrodes includes a fluorine source, a throttle mechanism, and a controller. The fluorine source supplies fluorine to the ion source as a cleaning material. The throttle mechanism mitigates loss of fluorine through a source aperture of the ion source by at least partially covering the source aperture. The controller controls the supply and flow rate from the fluorine source to the ion source and also controls the positioning of the throttle mechanism.
Abstract:
In an analyzing chamber for a mass analyzer, a body of the analyzing chamber may include an inlet through which an ion beam enters and an outlet through which the ion beam leaves. A shielding section may be installed on a sidewall. The shielding section may prevent the ion beam traveling along a path in the body from causing damage to the sidewall of the body. A detector may be interposed between the sidewall of the body and the shielding section. The detector may detect an ion beam leaking through the shielding section. Accordingly, damage to the sidewall of the body may be sufficiently reduced and/or prevented.
Abstract:
A method and apparatus are directed to providing a dopant profile adjustment solution in plasma doping systems for meeting both concentration and junction depth requirements. Bias ramping and bias ramp rate adjusting may be performed to achieve a desired dopant profile so that shallow and abrupt junctions in vertical and lateral directions are realized that are critical to device scaling in plasma doping systems.
Abstract:
Techniques for reducing effects of photoresist outgassing are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for reducing effects of photoresist outgassing in an ion implanter. The apparatus may comprise a drift tube located between an end-station and an upstream beamline component. The apparatus may also comprise a first variable aperture between the drift tube and the end-station. The apparatus may further comprise a second variable aperture between the drift tube and the upstream beamline component. The first variable aperture and the second variable aperture can be adjusted to facilitate differential pumping.
Abstract:
The present invention relates to components in ion implanters having surfaces adjacent to the path of the ion beam through the ion implanter. Such surfaces will be prone to deposition and the present invention addresses problems associated with delamination of deposited material. An ion implanter component is provided that has a surface defining at least in part an ion beam path through the ion implanter, wherein at least a portion of the surface has been roughened. The portion of the surface may be roughened to provide surface features defined at least in part by sharp changes in orientation of adjacent parts of the surface.
Abstract:
An irradiation system comprises a beam generation source, a mass analysis device, a beam transformer, a deflector for scanning which swings the beam reciprocally, a beam parallelizing device, an acceleration/deceleration device, and an energy filtering device. According to this invention, a hybrid angular energy filter generating both electric and magnetic fields to bend trajectories is provided as the energy filtering device. A pair of multi-surface energy slit units each having a plurality of energy slits that are switchable therebetween depending on an ion species for irradiation are further provided on a downstream side of the hybrid angular energy filter. It is possible to selectively irradiate a target wafer with high-current beams from low energy to high energy in the conditions where contamination such as neutral particles, different kinds of dopants, ions with different energies, metal, and dust particles is extremely small in amount.
Abstract:
An ion implanter includes an electrostatic chuck. The electrostatic chuck is configured to repel charged particles from a surface of the electrostatic chuck to limit deposits of the charged particles on the surface when the electrostatic chuck is not supporting any workpiece. An electrostatic chuck including a dielectric layer and at least one electrode is also provided. The at least one electrode is configured to accept a DC voltage signal to produce a first charge to repel charged particles from the dielectric layer when the dielectric layer is not supporting any workpiece to thereby limit deposits of the charged particles on the dielectric layer.
Abstract:
A system, method and program product for determining contamination of an ion beam are disclosed. In the event of an isobaric interference, or near isobaric interference between a contaminant ion and an expected ion of an ion beam, which is difficult to detect, it is possible to measure a third ion in the ion beam and estimate, based on the amount of the third ion measured, a relative amount of the contaminant ion compared to the expected ion. The estimated relative amount of the contaminant ion is used together with a measured mass resolution of the ion implantation system to determine whether an ion implantation process needs to be suspended.
Abstract:
An ion implantation is disclosed that includes an ionization chamber having a restricted outlet aperture and configured so that the gas or vapor in the ionization chamber is at a pressure substantially higher than the pressure within an extraction region into which the ions are to be extracted external to the ionization chamber. The vapor is ionized by direct electron impact ionization by an electron source that is in a region adjacent the outlet aperture of the ionization chamber to produce ions from the molecules of the gas or vapor to a density of at least 1010 cm−3 at the aperture while maintaining conditions that limit the transverse kinetic energy of the ions to less than about 0.7 eV. The beam is transported to a target surface and the ions of the transported ion beam are implanted into the target.
Abstract:
An ion source for an ion implantation system includes a vaporizer for producing a process gas; an electron source for generating an electron beam to ionize the process gas within a ionization chamber. The ionization chamber includes an extraction aperture for extracting an ion beam. The ion source, in accordance with the preset invention, is configured to be able to be retrofit into the design space of existing ion sources in, for example, Bernas source-based ion implanters.