Method And Apparatus For Extending Equipment Uptime In Ion Implantation
    1.
    发明申请
    Method And Apparatus For Extending Equipment Uptime In Ion Implantation 有权
    用于延长设备的方法和设备在离子注入中的正常运行时间

    公开(公告)号:US20070210260A1

    公开(公告)日:2007-09-13

    申请号:US10582392

    申请日:2004-12-09

    Abstract: The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases (F or Cl), and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources. Methods and apparatus are described which enable long equipment uptime when decaborane and octadecarborane are used as feed materials, as well as when vaporized elemental arsenic and phosphorus are used, and which serve to enhance beam stability during ion implantation.

    Abstract translation: 离子源的使用寿命通过源具有使用反应性卤素气体(F或Cl)对离子源和引出电极进行原位蚀刻清洁的规定而增强或延长,并且具有延长使用寿命的特征 清洁之间的持续时间。 后者包括准确的蒸汽流量控制,离子束光学的精确聚焦,以及防止沉积物形成或防止电极破坏的引出电极的热控制。 包括用于产生用于半导体晶片处理的掺杂剂离子的离子源的装置耦合到远程等离子体源,其将F或Cl离子递送到第一离子源,以清除第一离子源和提取电极中的沉积物。 这些方法和装置在运行诸如升华蒸汽源的可冷凝进料气体时能够延长设备正常运行时间,并且特别适用于所谓的冷离子源。 描述了使用十硼烷和十八烷硼烷作为原料的长设备正常运行时间以及当使用蒸发的元素砷和磷时能够延长设备运行时间的方法和装置,并且其用于增强离子注入期间的束稳定性。

    Dual mode ion source for ion implantation
    2.
    发明申请
    Dual mode ion source for ion implantation 审中-公开
    用于离子注入的双模离子源

    公开(公告)号:US20070170372A1

    公开(公告)日:2007-07-26

    申请号:US11648378

    申请日:2006-12-29

    Applicant: Thomas Horsky

    Inventor: Thomas Horsky

    Abstract: An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ or As4+ or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.

    Abstract translation: 公开了一种离子源,用于提供由离子簇组成的一系列离子束,例如B 2 H 2,H 2,SUP 2 +,/ B 2, > 5 + ,B 或B 1,B 3,B 3,...,...,..., 或者单体离子,例如Ge +,+, - , - , - , 为了使集群植入物和单体植入物进入硅衬底中以便制造CMOS器件,以及为了制造CMOS器件,为了实现<! - SIPO - > 以高生产率这样做。 离子束的范围由根据本发明的通用离子源产生,其被配置为以两种离散模式操作:电子冲击模式,其有效地产生离子簇,以及电弧放电模式,其有效地产生单体离子 。

    ION IMPLANTATION ION SOURCE, SYSTEM AND METHOD

    公开(公告)号:US20070278417A1

    公开(公告)日:2007-12-06

    申请号:US11778272

    申请日:2007-07-16

    Abstract: Various aspects of the invention provide improved approaches and methods for efficiently: Vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system; Delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source; Ionizing the decaborane into a large fraction of B10Hx+; Preventing thermal dissociation of decaborane; Limiting charge-exchange and low energy electron-induced fragmentation of B10Hx+; Operating the ion source without an arc plasma, which can improve the emittance properties and the purity of the beam; Operating the ion source without use of a strong applied magnetic field, which can improve the emittance properties of the beam; Using a novel approach to produce electron impact ionizations without the use of an arc discharge, by incorporation of an externally generated, broad directional electron beam which is aligned to pass through the ionization chamber to a thermally isolated beam dump; Providing production-worthy dosage rates of boron dopant at the wafer; Providing a hardware design that enables use also with other dopants, especially using novel hydride, dimer-containing, and indium- or antimony-containing temperature-sensitive starting materials, to further enhance the economics of use and production worthiness of the novel source design and in many cases, reducing the presence of contaminants; Matching the ion optics requirements of the installed base of ion implanters in the field; Eliminating the ion source as a source of transition metals contamination, by using an external and preferably remote cathode and providing an ionization chamber and extraction aperture fabricated of non-contaminating material, e.g. graphite, silicon carbide or aluminum; Enabling retrofit of the new ion source into the ion source design space of existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs; Using a control system in retrofit installations that enables retention of the installed operator interface and control techniques with which operators are already familiar; Enabling convenient handling and replenishment of the solid within the vaporizer without substantial down-time of the implanter; Providing internal adjustment and control techniques that enable, with a single design, matching the dimensions and intensity of the zone in which ionization occurs to the beam line of the implanter and the requirement of the process at hand; Providing novel approaches, starting materials and conditions of operation that enable the making of future generations of semiconductor devices and especially CMOS source/drains and extensions, and doping of silicon gates.

    Ion implantation ion source, system and method

    公开(公告)号:US20070262262A1

    公开(公告)日:2007-11-15

    申请号:US11647924

    申请日:2006-12-29

    Abstract: Various aspects of the invention provide improved approaches and methods for efficiently: Vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system; Delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source; Ionizing the decaborane into a large faction of B10Hx+; Preventing thermal dissociation of decaborane; Limiting charge-exchange and low energy electron-induced fragmentation of B10Hx+; Operating the ion source without an arc plasma, which can improve the emittance properties and the purity of the beam; Operating the ion source without use of a strong applied magnetic field, which can improve the emittance properties of the beam; Using a novel approach to produce electron impact ionizations without the use of an arc discharge, by incorporation of an externally generated, broad directional electron beam which is aligned to pass through the ionization chamber to a thermally isolated beam dump; Providing production-worthy dosage rates of boron dopant at the wafer; Providing a hardware design that enables use also with other dopants, especially using novel hydride, dimer-containing, and indium- or antimony-containing temperature-sensitive starting materials, to further enhance the economics of use and production worthiness of the novel source design and in many cases, reducing the presence of contaminants; Matching the ion optics requirements of the installed base of ion implanters in the field; Eliminating the ion source as a source of transition metals contamination, by using an external and preferably remote cathode and providing an ionization chamber and extraction aperture fabricated of non-contaminating material, e.g. graphite, silicon carbide or aluminum; Enabling retrofit of the new ion source into the ion source design space of existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs; Using a control system in retrofit installations that enables retention of the installed operator interface and control techniques with which operators are already familiar; Enabling convenient handling and replenishment of the solid within the vaporizer without substantial down-time of the implanter; Providing internal adjustment and control techniques that enable, with a single design, matching the dimensions and intensity of the zone in which ionization occurs to the beam line of the implanter and the requirement of the process at hand; Providing novel approaches, starting materials and conditions of operation that enable the making of future generations of semiconductor devices and especially CMOS source/drains and extensions, and doping of silicon gates.

    System and method for the manufacture of semiconductor devices by the implantation of carbon clusters
    5.
    发明申请
    System and method for the manufacture of semiconductor devices by the implantation of carbon clusters 有权
    通过植入碳簇制造半导体器件的系统和方法

    公开(公告)号:US20070148888A1

    公开(公告)日:2007-06-28

    申请号:US11634565

    申请日:2006-12-06

    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+. Upon subsequent annealing and activation, the boron diffusion is reduced, due to the gettering of interstitial defects by the carbon atoms.

    Abstract translation: 公开了一种方法,其包括将碳簇植入衬底中,以便在集成电路中制造PMOS晶体管结构中衬底掺杂硼和磷时改善晶体管结的特性。 这种新方法有两个过程:(1)USJ形成的扩散控制; 和(2)应力工程的高剂量碳植入。 USJ形成的扩散控制结合PMOS中的源极/漏极结构的硼或浅硼簇注入来证明。 更具体地,首先,诸如C 16 H 12 O + / O +的簇碳离子在大约 与随后的硼植入物相同剂量; 随后是浅硼,硼簇,磷或磷簇离子注入以形成源/漏延伸,优选使用硼氢化簇,例如B 18 H 12, 或> SUP> + 或B H + 。 随后的退火和活化,由于碳原子吸收间隙缺陷,硼扩散减少。

    Ion implantation system and control method
    6.
    发明申请
    Ion implantation system and control method 失效
    离子注入系统和控制方法

    公开(公告)号:US20060238133A1

    公开(公告)日:2006-10-26

    申请号:US11365719

    申请日:2006-03-01

    Abstract: An ion source is disclosed that includes an ionization chamber having a restricted outlet aperture and configured so that the gas or vapor in the ionization chamber is at a pressure substantially higher than the pressure within an extraction region into which the ions are to be extracted external to the ionization chamber. The vapor is ionized by direct electron impact ionization by an electron source that is in a region adjacent the outlet aperture of the ionization chamber to produce ions from the molecules of the gas or vapor to a density of at least 1010 cm−3 at the aperture while maintaining conditions that limit the transverse kinetic energy of the ions to less than about 0.7 eV. The beam is transported to a target sure and the ions of the transported ion beam are implanted into the target.

    Abstract translation: 公开了一种离子源,其包括具有受限制的出口孔的离子化室,并被构造成使得离子化室中的气体或蒸气的压力显着高于离子将被提取外部的萃取区域内的压力 电离室。 蒸汽通过电子源直接电离而电离,该电子源位于邻近离子化室的出口孔的区域,以产生从气体或蒸汽的分子到至少10×10 6的密度的离子, SUP> cm -3,同时保持将离子的横向动能限制在小于约0.7eV的条件。 将光束传输到目标物,并将被输送的离子束的离子注入目标物中。

    Dual mode ion source for ion implantation
    7.
    发明申请
    Dual mode ion source for ion implantation 审中-公开
    用于离子注入的双模离子源

    公开(公告)号:US20080042580A1

    公开(公告)日:2008-02-21

    申请号:US11648366

    申请日:2006-12-29

    Applicant: Thomas Horsky

    Inventor: Thomas Horsky

    Abstract: An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ or As4+′ or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.

    Abstract translation: 公开了一种离子源,用于提供由离子簇组成的一系列离子束,例如B 2 H 2,H 2,SUP 2 +,/ B 2, > 5 + ,B 或B 1,B 3,B 3,...,...,..., 或者单体离子,例如Ge +,Sb +,Sb +,SO 3 + 为了使集群植入物和单体植入物进入硅衬底以用于制造CMOS器件,以及 以高生产力这样做。 离子束的范围由根据本发明的通用离子源产生,其被配置为以两种离散模式操作:电子冲击模式,其有效地产生离子簇,以及电弧放电模式,其有效地产生单体离子 。

    Method and apparatus for extracting ions from an ion source for use in ion implantation
    9.
    发明申请
    Method and apparatus for extracting ions from an ion source for use in ion implantation 审中-公开
    用于离子注入离子源提取离子的方法和装置

    公开(公告)号:US20070108395A1

    公开(公告)日:2007-05-17

    申请号:US11647719

    申请日:2006-12-29

    Abstract: Thermal control is provided for an extraction electrode of an ion-beam producing system that prevents formation of deposits and unstable operation and enables use with ions produced from condensable vapors and with ion sources capable of cold and hot operation. Electrical heating of the extraction electrode is employed for extracting decaborane or octadecaborane ions. Active cooling during use with a hot ion source prevents electrode destruction, permitting the extraction electrode to be of heat-conductive and fluorine-resistant aluminum composition. The service lifetime of the system is enhanced by provisions for in-situ etch cleaning of the ion source and extraction electrode, using reactive halogen gases, and by having features that extend the service duration between cleanings, including accurate vapor flow control and accurate focusing of the ion beam optics. A remote plasma source delivers F or Cl ions to the de-energized ion source for the purpose of cleaning deposits in the ion source and the extraction electrode. These techniques enable long equipment uptime when running condensable feed gases such as sublimated vapors, and are particularly applicable for use with so-called cold ion sources and universal ion sources. Methods and apparatus are described which enable long equipment uptime when decaborane and octadecaborane are used as feed materials, as well as when vaporized elemental arsenic and phosphorus are used, and which serve to enhance beam stability during ion implantation.

    Abstract translation: 为离子束产生系统的提取电极提供热控制,其防止沉积物的形成和不稳定的操作,并且能够与可冷凝蒸气和能够冷热操作的离子源产生的离子一起使用。 提取电极的电加热用于提取十硼烷或十八硼烷离子。 使用热离子源时的主动冷却可防止电极破坏,从而使引出电极具有导热和防氟的铝组成。 通过使用反应性卤素气体对离子源和引出电极进行原位蚀刻清洗,并且具有延长清洗之间的使用持续时间的特征,包括准确的蒸汽流量控制和精确的聚焦,增强了系统的使用寿命 离子束光学。 远程等离子体源将F或Cl离子输送到去激活离子源,以清除离子源和提取电极中的沉积物。 这些技术使得在运行可冷凝的进料气体如升华蒸汽时长的设备正常运行时间,并且特别适用于所谓的冷离子源和通用离子源。 描述了使用十硼烷和十八硼烷作为原料的长设备正常运行时间,以及当使用蒸发的元素砷和磷时,并且用于提高离子注入期间的束稳定性的方法和装置。

    Ion implantation ion source, system and method

    公开(公告)号:US20070107841A1

    公开(公告)日:2007-05-17

    申请号:US11648506

    申请日:2006-12-29

    Abstract: Various aspects of the invention provide improved approaches and methods for efficiently: Vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system; Delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source; Ionizing the decaborane into a large fraction of B10Hx+; Preventing thermal dissociation of decaborane; Limiting charge-exchange and low energy electron-induced fragmentation of B10Hx+; Operating the ion source without an arc plasma, which can improve the emittance properties and the purity of the beam; Operating the ion source without use of a strong applied magnetic field, which can improve the emittance properties of the beam; Using, a novel approach to produce electron impact ionizations without the use of an arc discharge, by incorporation of an externally generated, broad directional electron beam which is aligned to pass through the ionization chamber to a thermally isolated beam dump;. Providing production-worthy dosage rates of boron dopant at the wafer; Providing a hardware design that enables use also with other dopants, especially using novel hydride, dimer-containing, and indium- or antimony-containing temperature-sensitive starting materials, to further enhance the economics of use and production worthiness of the novel source design and in many cases, reducing the presence of contaminants; Matching the ion optics requirements of the installed base of ion implanters in the field; Eliminating the ion source as a source of transition metals contamination, by using an external and preferably remote cathode and providing an ionization chamber and extraction aperture fabricated of non-contaminating material, e.g. graphite, silicon carbide or aluminum; Enabling retrofit of the new ion source into the ion source design space of existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs; Using a control system in retrofit installations that enables retention of the installed operator interface and control techniques with which operators are already familiar; Enabling convenient handling and replenishment of the solid within the vaporizer without substantial down-time of the implanter; Providing internal adjustment and control techniques that enable, with a single design, matching the dimensions and intensity of the zone in which ionization occurs to the beam line of the implanter and the requirement of the process at hand; Providing novel approaches, starting materials and conditions of operation that enable the making of future generations of semiconductor devices and especially CMOS source/drains and extensions, and doping of silicon gates.

Patent Agency Ranking