Abstract:
A method controls an air handler that generates heated air from hot water generated by a water heater. The method includes generating a signal in the presence or absence of an indicia of water flow associated with the water heater; initiating operation of a pump associated with the air handler when the signal indicates that water flow associated with the water heater is at least at a selected level to supply hot water to the air handler sufficient to generate heated air; and/or terminating operation of the pump and/or a blower/fan associated with the air handler when the presence or absence signal indicates that the water flow associated with the water heater is less than the selected level.
Abstract:
A process and device enabling accurate mass flow control is described. A mass flow controller can be re-specified corresponding to multiple types of actual process gases and multiple flow rate ranges, even after the mass flow controller has been shipped. Calibration gas data is derived using actual flow rate versus a flow rate setting signal to generate calibration gas data. Actual gas data is derived by measuring actual flow rate versus a flow rate setting signal for each actual gas and saving. Subsequently, prior to operating the mass flow rate control device, the characteristic data for an actual and the calibration gas characteristic data is recalled. The calibration gas characteristic data is then converted to controlled flow rate correction data based on the actual gas characteristic data that is saved to the control unit and the actual gas flow rate is corrected based on this controlled flow rate correction data.
Abstract:
System and method for operating a material deposition system are disclosed. In one embodiment, the method can include periodically injecting a precursor into a vaporizer through an injector at the vaporizer, vaporizing the precursor in the vaporizer and supplying the vaporized precursor to a reaction chamber in fluid communication with the vaporizer, and shutting down the vaporizer and the reaction chamber after a period of time. The method can also include conducting maintenance of the injector at the vaporizer by using a vapor solvent rinse.
Abstract:
Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic. In an alternative embodiment, a deposition system contains a catalytic water vapor generator connected to an ALD chamber.
Abstract:
A method for delivering a fluid to a target site is disclosed in one embodiment of the invention as including generating a first fluid stream having a first flow rate, introducing the first fluid stream into a flow modulator, and permitting a second fluid stream having a second flow rate that is substantially more uniform than the first flow rate to exit the flow modulator. The flow modulator may smooth out irregularities in the flow rate, thereby generating the second fluid steam having a second flow rate that is substantially more uniform than the first flow rate.
Abstract:
Disclosed is a cylindrical, single-component two-stage regulator for controlling a pressure and a flow rate of a gas. The regulator includes a housing for holding the two stages having an ingress adapted for connection to a source of gas at a high input pressure and an egress adapted for supplying gas at a lower output pressure than the high input pressure; a first stage for reducing the pressure of the gas from the high input pressure to a fixed intermediate pressure; and a second stage for reducing the pressure of the gas from the fixed intermediate pressure to the lower output pressure and regulating the flow rate of the gas out of the egress. One application of the present invention is for use in scuba (Self-Contained Under-water Breathing Apparatus) applications, where it replaces the traditional two-component user-adjustable regulator. The regulator may be made out of stainless steel, and is small enough to fit into a user's mouthpiece.
Abstract:
The present invention relates to a system and method for fluid flow control, for particular user in a hay baler. The system involves calculating or inputting a preferred flow rate (the Set Point), measuring the “actual” flow rate of liquid through the system, and controlling the speed of a pump used to move the liquid through the system to ensure that the flow rate is maintained as close as possible to the Set Point flow rate at all times during operation. The flow rate Set Point can be calculated using one or more user or sensor inputs, including the dose rate, the mass flow rate of fodder, the moisture content, etc.
Abstract:
Disclosed is a method and system for controlling the formation of liquid or gas slugs along a pipeline. In embodiments, an injection unit injects a liquid surface tension reducing agent, such as a foamant, into the pipeline upstream of the high point. A control unit can be used to control the injection unit. In certain arrangements, the control unit adjusts the injection of the agent based on measured parameters of interest. In embodiments where the control unit utilizes temperature measurements, one or more temperature sensors are positioned along the pipeline. The control unit utilizes the temperature measurements to determine whether a predetermined condition exists or a liquid or gas slug is present.
Abstract:
A conduit system for a lithographic apparatus is disclosed, the conduit system including a conduit configured to guide a liquid or liquid-gas mixture, and a gas injection nozzle configured to introduce a gas in the liquid or liquid-gas mixture to at least partially absorb pressure peaks or waves in the liquid or liquid-gas mixture. In an embodiment, the gas injection nozzle may be arranged in a pump of the conduit system. The pump further includes a pump inlet, a pump outlet and a pump chamber between the pump inlet and the pump outlet arranged for compression of the liquid or liquid-gas mixture.
Abstract:
The present invention provides novel microfluidic devices and methods for preventing/ameliorating formation of precipitate blockages in microfluidic devices. In particular the devices and methods of the invention utilize microchannels of specific cross-sectional configuration and of specific arrangement as well as application of AC current orthogonal to the direction of fluid flow, in order to preventing/ameliorating formation of precipitate blockages in microfluidic devices.