Abstract:
Method for producing a microelectronic device formed from a stack of supports (W) each provided with one or more electronic components (C) and comprising a conductive structure (170, 470) formed from a first blind conductive via (171b, 472) and a second blind conductive via (171a, 473) with a greater height, the first via and the second via being connected together.
Abstract:
There are disclosed herein various implementations of a shield interposer situated between a top active die and a bottom active die for shielding the active dies from electromagnetic noise. One implementation includes an interposer dielectric layer, a through-silicon via (TSV) within the interposer dielectric layer, and an electromagnetic shield. The TSV connects the electromagnetic shield to a first fixed potential. The electromagnetic shield may include a grid of conductive layers laterally extending across the shield interposer. The shield interposer may also include another electromagnetic shield connected to another fixed potential.
Abstract:
Radio frequency shielding within a semiconductor package is described. In one example, a multiple chip package has a digital chip, a radio frequency chip, and an isolation layer between the digital chip and the radio frequency chip. A cover encloses the digital chip and the radio frequency chip.
Abstract:
A transmission line structure for semiconductor RF and wireless circuits, and method for forming the same. The transmission line structure includes embodiments having a first die including a first substrate, a first insulating layer, and a ground plane, and a second die including a second substrate, a second insulating layer, and a signal transmission line. The second die may be positioned above and spaced apart from the first die. An underfill is disposed between the ground plane of the first die and the signal transmission line of the second die. Collectively, the ground plane and transmission line of the first and second die and underfill forms a compact transmission line structure. In some embodiments, the transmission line structure may be used for microwave applications.
Abstract:
A semiconductor package and method of manufacture are provided. The semiconductor package may include a package substrate, a semiconductor chip, a molding member and a grounding member. The package substrate may include a ground pad and a signal pad. The semiconductor chip may be arranged on an upper surface of the package substrate. The semiconductor chip may be electrically connected with the signal pad of the package substrate. The molding member may be formed on the upper surface of the package substrate to cover the semiconductor chip. The grounding member may be arranged on a surface of the molding member. The grounding member may be electrically connected with the ground pad.
Abstract:
The present invention provides an integrated inductor and an integrated inductor fabricating method. The integrated inductor comprises: a semiconductor substrate, an inductor, and a redistribution layer (RDL). The inductor is formed above the semiconductor substrate. The RDL is formed above the inductor and has a specific pattern to form a patterned ground shield (PGS). The integrated inductor fabricating method comprises: forming a semiconductor substrate; forming an inductor above the semiconductor substrate; and forming redistribution layer (RDL) having a specific pattern above the inductor to form a patterned ground shield (PGS).
Abstract:
One feature pertains to a multi-chip package that includes a substrate and an electromagnetic interference (EMI) shield coupled to the substrate. At least one integrated circuit is coupled to a first surface of the substrate. The EMI shield includes a metal casing configured to shield the package from radio frequency radiation, a dielectric layer coupled to at least a portion of an inner surface of the metal casing, and a plurality of signal lines. The signal lines are coupled to the dielectric layer and electrically isolated from the metal casing by the dielectric layer. At least one other integrated circuit is coupled to an inner surface of the EMI shield, and at least a portion of the inner surface of the EMI shield faces the first surface of the substrate. The signal lines are configured to provide electrical signals to the second circuit component.
Abstract:
A method of providing signal, power and ground through a through-silicon-via (TSV), and an integrated circuit chip having a TSV that simultaneously provides signal, power and ground. In one embodiment, the method comprises forming a TSV through a semiconductor substrate, including forming a via in the substrate; and forming a multitude of conductive bars in the via. The multitude of conductive bars include at least one signal bar, at least one power bar, and at least one ground bar. The method further comprises connecting the at least one power bar to a power voltage source to apply power through the TSV; connecting the at least one ground bar to a ground voltage; and connecting the at least one signal bar to a source of an electronic signal to conduct the signal through the TSV and to form a hybrid power-ground-signal TSV in the substrate.
Abstract:
A method of providing signal, power and ground through a through-silicon-via (TSV), and an integrated circuit chip having a TSV that simultaneously provides signal, power and ground. In one embodiment, the method comprises forming a TSV through a semiconductor substrate, including forming a via in the substrate; and forming a multitude of conductive bars in the via. The multitude of conductive bars include at least one signal bar, at least one power bar, and at least one ground bar. The method further comprises connecting the at least one power bar to a power voltage source to apply power through the TSV; connecting the at least one ground bar to a ground voltage; and connecting the at least one signal bar to a source of an electronic signal to conduct the signal through the TSV and to form a hybrid power-ground-signal TSV in the substrate.
Abstract:
A semiconductor element is provided, including: a substrate having a plurality of first conductive through holes and second conductive through holes formed therein; a redistribution layer formed on the substrate and having a plurality of conductive pads electrically connected to the first conductive through holes; and a metal layer formed on the redistribution layer and electrically connected to the second conductive through holes. The metal layer further has a plurality of openings for the conductive pads of the redistribution layer to be exposed from the openings without electrically connecting the first metal layer. As such, the metal layer and the second conductive through holes form a shielding structure that can prevent passage of electromagnetic waves into or out of the redistribution layer or side surfaces of the semiconductor element, thereby effectively shield electromagnetic interference.