Abstract:
Various implementations described herein are directed to a scan cell. The scan cell may include an input phase having multiple multiplexers and a latch arranged to receive a scan input signal, a first address signal, and a second address signal and provide the scan input signal, the first address signal, or the second address signal based on a scan enable signal, a first clock signal, and a selection enable signal. The scan cell may include an output phase having multiple latches arranged to receive the scan input signal, the first address signal, or the second address signal from the input phase and provide the scan input signal, the first address signal, or the second address signal as a scan output signal based on a second clock signal and a third clock signal.
Abstract:
The present disclosure provides a gate driving circuit, a method for detecting the gate driving circuit, an array substrate and a display apparatus. The gate driving circuit comprises a plurality of cascaded gate driving units, access units, a first signal line and a second signal line. Each access unit is connected to its corresponding gate driving unit and the gate driving unit at the next stage to its corresponding gate driving unit. The access unit corresponding to the gate driving unit at each odd stage is connected to the first signal line such that the first signal line detects an output signal from that gate driving unit via the access unit, and the access unit corresponding to the gate driving unit at each even stage is connected to the second signal line such that the second signal line detects an output signal from that gate driving unit via the access unit.
Abstract:
Techniques are presented for determining current leakage from a memory array or other circuit based on a low voltage path. For example, the technique can be applied to determine word line to word line leakage. By looking at a count for the clock used in regulating the low voltage output node, the amount of leakage can be determined. The leakage determination can be performed as part of test process or during normal memory operations.
Abstract:
An integrated circuit (IC) having a scan compression architecture includes decompression logic coupled between test access input and a block of IC elements (e.g. flip-flops) coupled together to define a plurality of scan paths. The block of IC elements includes an initial data selector at an initial position of each of the scan paths, and an additional data selector downstream within at least one of the scan paths and configured to reconfigure an order of the IC elements within the at least one scan path. Compression logic is coupled between the block of IC elements and a test access output.
Abstract:
Volatile memory devices may be on a first memory module that is coupled to a memory controller by a first signal path. A nonvolatile memory device may be on a second memory module that is coupled to the first memory module by a second signal path. A memory transaction for the nonvolatile memory device may be transferred from the memory controller to at least one of the volatile memory devices using the first signal path and data associated with the memory transaction is to be written from at least one of the volatile memory devices to the nonvolatile memory device using the second signal path and a control signal. A defect circuit may generate the control signal in view of a detection of a defect in the nonvolatile memory device based on a comparison of a test value read from a memory location to a stored value.
Abstract:
Volatile memory devices corresponding to a first memory hierarchy may be on a first memory module that is coupled to a memory controller by a first signal path. A nonvolatile memory device corresponding to a second memory hierarchy may be on a second memory module that is coupled to the first memory module by a second signal path. Memory transactions for the nonvolatile memory device may be transferred from the memory controller to the first memory hierarchy using the first signal path, and data associated with an accumulation of the memory transactions may be written from the first memory hierarchy to the second memory hierarchy using the second signal path and a first and second control signal. The first control signal may be generated in view of a detection of wear and the second control signal may be generated in view of a detection of a defect.
Abstract:
Some embodiments include apparatus, systems, and methods comprising semiconductor dice arranged in a stack, a number of connections configured to provide communication among the dice, at least a portion of the connections going through at least one of the dice, and a module configured to check for defects in the connections and to repair defects the connections.
Abstract:
A memory system is disclosed comprising a memory controller and a first set of volatile memory devices defining a first memory hierarchy. The first set of volatile memory devices are disposed on at least one first memory module, which is coupled to the memory controller in a daisy-chained configuration. A first integrated circuit buffer device is included on the module. The system has a second set of nonvolatile memory devices defining a second memory hierarchy. The second set of nonvolatile memory devices are disposed on at least one second memory module, which is coupled to the at least one first memory module in a daisy-chained configuration. The second module includes a second integrated circuit buffer device. The system is configured such that signals transmitted between the memory controller and the second memory hierarchy pass through the first memory hierarchy.
Abstract:
A method of operating an apparatus in a functional mode and an ATPG scan mode and an apparatus for use in a functional mode and an ATPG scan mode are provided. The apparatus includes a set of latches including a first latch and a second latch. The first latch is operated as a master latch and the second latch is operated as a master latch in the functional mode. The first latch is operated as a master latch of a flip-flop and the second latch is operated as a slave latch of the flip-flop in the ATPG scan mode. In one configuration, the apparatus includes a plurality of latches including at least the first and second latches, an output of each of the latches is coupled to a digital circuit, the apparatus includes a plurality of functional inputs, and each of the functional inputs is input to the digital circuit.
Abstract:
The invention relates to a method for performing an array built-in self-test (ABIST) on an electronic circuit (100), the electronic circuit (100) comprising a memory (110) with at least two memory arrays (111-115) and at least two array built-in self-test engines (116-120), wherein each automatic built-in self-test engine (116-120) is associated with a different memory array (111-115) and wherein each array built-in self-test engine (116-120) is associated with a programmable delay unit (DU1-DU5), the method comprising the following steps:determine at least one delay value (dn), the delay value (dn) corresponding to an array built-in self-test engine (116-120) and the delay value (dn) depending on the execution time (tdn) for testing the memory array (111-115) associated with the array built-in self-test engine (116-120); provide the at least one delay value (dn) to the programmable delay unit (DU1-DU5); and delay the start of the array built-in self-test engine (116-120) depending on the respective delay value (dn).