Abstract:
A semiconductor device includes a substrate, at least two gate spacers, and a gate stack. The substrate has at least one semiconductor fin. The gate spacers are disposed on the substrate. At least one of the gate spacers has a sidewall facing to another of the gate spacers. The gate stack is disposed between the gate spacers. The gate stack includes a high-κ dielectric layer and a gate electrode. The high-κ dielectric layer is disposed on the substrate and covers at least a portion of the semiconductor fin while leaving the sidewall of said at least one gate spacer uncovered. The gate electrode is disposed on the high-κ dielectric layer.
Abstract:
A semiconductor device includes a substrate, an insulating structure, and a gate stack. The substrate has at least one semiconductor fin. The insulating structure is disposed above the substrate and separated from the semiconductor fin to form a gap therebetween. The insulating structure has a sidewall facing the semiconductor fin. The gate stack covers at least a portion of the semiconductor fin and is at least disposed in the gap between the insulating structure and the semiconductor fin. The gate stack includes a high-κ dielectric layer and a gate electrode. The high-κ dielectric layer covers the semiconductor fin while leaves the sidewall of the insulating structure uncovered. The gate electrode is disposed above the high-κ dielectric layer and at least in the gap between the insulating structure and the semiconductor fin.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate and a fin structure formed over the substrate. The semiconductor structure further includes an isolation structure formed around the fin structure and a gate structure formed across the fin structure. In addition, the gate structure includes a first portion formed over the fin structure and a second portion formed over the isolation structure, and the second portion of the gate structure includes an extending portion extending into the isolation structure.
Abstract:
A semiconductor device includes a substrate, a first gate, a second gate, and an insulating structure. The substrate includes a first fin and a second fin. The first gate is disposed over the first fin. The second gate is disposed over the second fin. A gap is formed between the first gate and the second gate, and the gap gets wider toward the substrate. The insulating structure is disposed in the gap. The insulating structure has a top surface and a bottom surface opposite to each other. The bottom surface faces the substrate. An edge of the top surface facing the first gate is curved inward the top surface.
Abstract:
A FinFET device structure and method for forming the same are provided. The FinFET device structure includes a stop layer formed over a substrate and a fin structure formed over the stop layer. The FinFET device structure includes a gate structure formed over the fin structure and a source/drain (S/D) structure adjacent to the gate structure. A bottom surface of the S/D structure is located at a position that is higher than or level with a bottom surface of the stop layer.
Abstract translation:提供了一种FinFET器件结构及其形成方法。 FinFET器件结构包括形成在衬底上的阻挡层和形成在阻挡层上的翅片结构。 FinFET器件结构包括形成在鳍结构上的栅极结构和与栅极结构相邻的源极/漏极(S / D)结构。 S / D结构的底面位于比止挡层的底面高或者与其平齐的位置。
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a first metal layer formed over a substrate and an interconnect structure formed over the first metal layer. The interconnect structure includes an upper portion, a middle portion and a lower portion, the middle portion is connected between the upper portion and the lower portion. The upper portion and the lower portion each have a constant width, and the middle portion has a tapered width which is gradually tapered from the upper portion to the lower portion.
Abstract:
A semiconductor device includes a Fin FET transistor. The Fin FET transistor includes a first fin structure extending in a first direction, a gate stack and a source and a drain. The gate stack includes a gate electrode layer and a gate dielectric layer, covers a portion of the fin structure and extends in a second direction perpendicular to the first direction. Each of the source and drain includes a stressor layer disposed over the fin structure. The stressor layer applies a stress to a channel layer of the fin structure under the gate stack. The stressor layer penetrates under the gate stack. A vertical interface between the stressor layer and the fin structure under the gate stack in a third direction perpendicular to the first and second directions includes a flat portion.