Abstract:
An atomic force microscopy (AFM) nanoprobe comprising a nanocone base and a nanoprobe tip wherein the length to base diameter aspect ratio is at least 3 or more. The AFM nanoprobe tip structure comprises an orientation-controlled (vertical or inclined), high-aspect-ratio nanocone structure without catalyst particles, with a tip radius of curvature of at most 20 nm.
Abstract:
This invention discloses novel field emitters which exhibit improved emission characteristics combined with improved emitter stability, in particular, new types of carbide or nitride based electron field emitters with desirable nanoscale, aligned and sharped-tip emitter structures.
Abstract:
Nanotube assemblies and methods for manufacturing the same, including one or more protective layers. A nanotube assembly may include a substrate, a nanotube array, formed on the substrate, and a protective layer, formed on a first area of the substrate where the nanotube array is not, the protective layer reducing the formation of nanocones, and promoting the formation of nanotubes, which make up the nanotube array.
Abstract:
This invention discloses novel field emitters which exhibit improved emission characteristics combined with improved emitter stability, in particular, new types of carbide or nitride based electron field emitters with desirable nanoscale, aligned and sharped-tip emitter structures.
Abstract:
This invention describes unique treatment methods and innovative articles that can be placed in a human or animal body to enable controlled destruction of diseased tissue. The methods include destruction of diseased cells and tissues by magnetically controlled motion and an externally controllable drug delivery process with a capability to start and stop the drug delivery at any time, for any duration. This invention provides two approaches to diseased cell destruction, (1) magneto-mechanical disturbance of cell structure (e.g. cancer cells) for cell lysis and (2) magnetically activated drug release at local regions (e.g. tumors) from a magnetic-particle-containing drug reservoir. The invention also provides combinations of both the above treatments for dual therapy. It further combines one or both of the treatments with magnetic hyperthermia for multifunctional cell destruction therapy. The approaches can be combined with magnetic MRI for monitoring the accuracy of placement as well as for following up the cancer destruction progress and appropriate reprogramming of the magneto-mechanical therapy and remote-controlled drug release.
Abstract:
Applicant has discovered that articles comprising inorganic surfaces that are difficult to bond can be more effectively soldered or brazed with a solder or braze containing rare earth elements where the rare earth (RE) elements are substantially kept from contact with air at soldering temperatures, i.e. the RE elements are exposed to air for no more than a few seconds at soldering temperature. This can be efficiently accomplished in several ways. The result is efficient, strong bonding of materials previously considered difficult to bond.
Abstract:
In accordance with the invention, improved vacuum microtube devices are provided with arrangements for tunably spacing the gate and the cathode. Tuning can be effected by using an electrostaic or magnetic actuator to move the gate on a spring or a rail. Advantageously a feedback arrangement can be used to control the spacing. Magnetic reassembly components can be provided for facilitating release of tube components in fabrication.
Abstract:
In accordance with the invention, an optical cross-connect switch includes an optical router for distributing multi-wavelength optical input signals, an optical combiner for supplying multi-wavelength signals at the output ports of the switch, and optical fibers for interconnecting the optical router and optical combiner. Selected interconnecting optical fibers include controllable wavelength-selective elements, such as magnetically controllable fiber gratings, which are capable of transmitting or reflecting individual channels within the multi-wavelength optical signals so that a selected channel of a particular wavelength can be routed from any of the input ports to any of the output ports of the switch.
Abstract:
A circuit device is disclosed comprising at least two circuit layers or circuit devices vertically interconnected with a plurality of parallel and substantially equi-length nanowires disposed therebetween. The nanowires may comprise composites, e.g., having a heterojunction present along the length thereof, to provide for a variety of device applications. Also disclosed is a method for making the circuit device comprising growing a plurality of nanowires on a dissolvable or removable substrate, equalizing the length of the nanowires (e.g., so that each one of the plurality of nanowires is substantially equal in length), transferring and bonding exposed ends of the plurality of nanowires to a first circuit layer; and removing the dissolvable substrate. The nanowires attached to the first circuit layer then can be further bonded to a second circuit layer to provide the vertically interconnected circuit device.
Abstract:
A reduced CTE composite structure is made by providing a matrix material whose CTE is to be reduced, adding negative CTE bodies to the matrix material and mechanically coupling the matrix material to the negative CTE bodies as by deforming the composite structure. A preferred application is to make an improved composite material for use as a heat sink for semiconductor substrates with a minimum of thermal expansion mismatch.