Abstract:
A semiconductor device includes; an active pattern on a substrate, a source/drain pattern on the active pattern, a channel pattern connected to the source/drain pattern and including semiconductor patterns spaced apart in a vertical stack, and a gate electrode extending across the channel pattern. The semiconductor patterns includes a first semiconductor pattern and a second semiconductor pattern. The gate electrode includes a first part between the substrate and the first semiconductor pattern and a second part between the first semiconductor pattern and the second semiconductor pattern. A width of the first part varies with a depth of the first part, such that a width of a middle portion of the first part is less than a width of a lower portion of the first part and a width of an upper portion of the first part.
Abstract:
The inventive concepts provide methods of manufacturing a semiconductor device. The method includes patterning a substrate to form an active pattern, forming a gate pattern intersecting the active pattern, forming a gate spacer on a sidewall of the gate pattern, forming a growth-inhibiting layer covering an upper region of the gate pattern, and forming source/drain electrodes at opposite first and second sides of the gate pattern.
Abstract:
A semiconductor device is disclosed. The device includes a substrate including an active region defined by a device isolation layer, a fin pattern protruding from the substrate and extending in a first direction, the fin pattern including a gate fin region and a source/drain fin region, a gate pattern disposed on the gate fin region to extend in a second direction crossing the first direction, and a source/drain portion provided on a sidewall of the source/drain fin region. When measured in the second direction, a width of the source/drain fin region is different from a width in the second direction of the gate fin region.
Abstract:
A semiconductor device is disclosed. The device includes a substrate including an active region defined by a device isolation layer, a fin pattern protruding from the substrate and extending in a first direction, the fin pattern including a gate fin region and a source/drain fin region, a gate pattern disposed on the gate fin region to extend in a second direction crossing the first direction, and a source/drain portion provided on a sidewall of the source/drain fin region. When measured in the second direction, a width of the source/drain fin region is different from a width in the second direction of the gate fin region.
Abstract:
Provided is a semiconductor device which includes a substrate including a first region and a second region different from the first region, a first active pattern provided on the substrate in the first region, a second active pattern provided on the substrate in the second region, a first gate structure crossing over the first active pattern and a second gate structure crossing over the second active pattern, first source/drain regions disposed on the first active pattern at opposite sides of the first gate structure, second source/drain regions disposed on the second active pattern at opposite sides of the second gate structure, and auxiliary spacers disposed in the first region to cover a lower portion of each of the first source/drain regions.
Abstract:
Disclosed are a semiconductor device and a method of fabricating the same. The semiconductor device includes an active pattern on a substrate, a device isolation layer provided on the substrate to define the active pattern, a pair of source/drain patterns on the active pattern and a channel pattern therebetween, the channel pattern including semiconductor patterns which are stacked and are spaced apart from each other, a gate electrode crossing the channel pattern, and a gate spacer on a side surface of the gate electrode. The gate spacer located on the device isolation layer includes an upper portion with a first thickness and a lower portion with a second thickness. The second thickness is larger than the first thickness, and the lower portion of the gate spacer is located at a level lower than the uppermost one of the semiconductor patterns.
Abstract:
A method of fabricating a semiconductor device is provided as follows. A source/drain pattern is formed on a substrate. The source/drain pattern contains silicon atoms and germanium atoms. At least one germanium atom is removed from the germanium atoms of the source/drain pattern.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The device may include an active pattern protruding from a substrate, gate structures crossing the active pattern, and a source/drain region provided between adjacent ones of the gate structures. The source/drain region may include a source/drain epitaxial layer in a recessed region, which is formed in the active pattern between the adjacent ones of the gate structures. Further, an impurity diffusion region may be provided in the active pattern to enclose the source/drain epitaxial layer along inner surfaces of the recessed region.