-
公开(公告)号:CN114972527B
公开(公告)日:2025-04-01
申请号:CN202210497995.1
申请日:2022-05-09
Applicant: 北京卫星环境工程研究所
IPC: G06T7/80
Abstract: 本申请提供一种基于立体视觉的投影引导标定方法,投影第一图像至参考面,得到第二图像,第一图像包括多个第一标识点;拍摄第二图像,得到第三图像,第三图像具有多个第三标识点;遍历求解第一标识点和第三标识点的欧式距离,获得匹配点集合;将匹配点集合输入至映射函数,得到单应性矩阵;拍摄标定板,得到第一标定图像;将第一标定图像和单应性矩阵输入至反演函数,得到第二标定图像;单目标定第一标定图像,得到摄像装置的第一外参矩阵和第一畸变向量;单目标定第二标定图像,得到投影装置的第二外参矩阵和第二畸变向量;将第一外参矩阵和第二外参矩阵输入至转换函数,得到投影装置坐标系和摄像装置坐标系之间的旋转矩阵和平移矩阵。
-
公开(公告)号:CN117708978A
公开(公告)日:2024-03-15
申请号:CN202311700813.7
申请日:2023-12-12
Applicant: 北京卫星环境工程研究所
IPC: G06F30/15
Abstract: 本发明提供了一种基于蒙皮点阵结构的航天器支架轻量化设计方法,通过获取结构件的三维模型,并基于三维模型构建拓扑优化设计域;其中,结构件至少包括设计包络、功能空间和接口;基于拓扑优化模型对设计域进行拓扑优化,并进行光顺化处理,得到第一优化实体模型;将第一优化实体模型与接口模型进行布尔并运算,得到第二优化实体模型;对第二优化实体模型执行抽壳操作,得到蒙皮模型;从预先构建的点阵单元库中选取填充单元对蒙皮模型进行填充,以获得蒙皮点阵结构模型;对蒙皮点阵结构模型进行有限元分析,获得优化蒙皮点阵结构。借此,本发明可实现集轻量化、刚度优、承载高等功能于一体的航天器支架产品的快速研制。
-
公开(公告)号:CN114972527A
公开(公告)日:2022-08-30
申请号:CN202210497995.1
申请日:2022-05-09
Applicant: 北京卫星环境工程研究所
IPC: G06T7/80
Abstract: 本申请提供一种基于立体视觉的投影引导标定方法,投影第一图像至参考面,得到第二图像,第一图像包括多个第一标识点;拍摄第二图像,得到第三图像,第三图像具有多个第三标识点;遍历求解第一标识点和第三标识点的欧式距离,获得匹配点集合;将匹配点集合输入至映射函数,得到单应性矩阵;拍摄标定板,得到第一标定图像;将第一标定图像和单应性矩阵输入至反演函数,得到第二标定图像;单目标定第一标定图像,得到摄像装置的第一外参矩阵和第一畸变向量;单目标定第二标定图像,得到投影装置的第二外参矩阵和第二畸变向量;将第一外参矩阵和第二外参矩阵输入至转换函数,得到投影装置坐标系和摄像装置坐标系之间的旋转矩阵和平移矩阵。
-
公开(公告)号:CN118691748A
公开(公告)日:2024-09-24
申请号:CN202410889144.0
申请日:2024-07-04
Applicant: 北京卫星环境工程研究所
IPC: G06T17/00
Abstract: 本说明书实施例提供航天器总装状态模型构建方法及装置,方法包括:确定航天器产品信息和航天器产品信息对应的三维模型,将三维模型与航天器产品信息进行关联;确定模型变换规则,基于航天器产品信息确定产品生效结果;基于产品生效结果和三维模型确定模型状态;基于模型变换规则和模型状态进行模型构建。通过将三维模型与航天器产品信息进行关联;确定模型变换规则,基于航天器产品信息确定产品生效结果;基于产品生效结果和三维模型确定模型状态;基于模型变换规则和模型状态进行模型构建,可以实现基于状态展示用轻量化模型结构能够有效避免父子级间状态的可视化冲突,在航天器总装领域具有普适性。
-
公开(公告)号:CN118628446A
公开(公告)日:2024-09-10
申请号:CN202410672055.0
申请日:2024-05-28
Applicant: 北京卫星环境工程研究所
Abstract: 本发明提供一种基于三维高斯溅射的产品装拆状态检测方法、装置及设备,方法包括将检测场景中的产品零部件模型转换为三角面片模型;以每个零部件为单位,对三角面片模型进行分裂,得到三角面片边长均小于预设边长的分裂面片模型;将分裂面片模型中每个三角面片的顶点输出为用于三维高斯溅射的初始点云;在虚拟模型和实景中的对应位置,布置虚实融合用靶标;环绕待测产品区域进行扫描,得到包含虚实融合用靶标的图像信息和位姿信息;基于图像信息、位姿信息和初始点云,利用三维高斯溅射进行三维场景重建,得到待测产品场景模型;基于待测产品场景模型,确定待测产品的装拆状态为已安装状态或未安装状态,有效地保证了产品装拆状态检测的准确性。
-
公开(公告)号:CN116861744A
公开(公告)日:2023-10-10
申请号:CN202310847498.4
申请日:2023-07-11
Applicant: 北京卫星环境工程研究所
IPC: G06F30/23 , G06F30/10 , G06F17/15 , G06F111/10
Abstract: 本发明公开了一种基于点阵结构的卫星发动机保护罩设计方法,包括以下步骤:S1、输入异形支架、发动机以及干涉对象的三维模型,计算保护罩的设计空间;S2、将保护罩划分为罩体和底座两部分,对其进行功能分析后,确认实体区域和点阵区域;S3、构建点阵单元库,根据功能分析结果选择填充单元,通过点阵单元填充算法,实现点阵单元的随形填充;S4、整合点阵结构和实体结构形成最终用于打印的保护罩模型,通过3D打印技术快速实现设计意图和产品制造。本申请可研制出集轻量化、易拆装、可视性佳、保护性优、接口匹配度高等功能于一体的3D打印点阵结构卫星发动机保护罩产品。
-
公开(公告)号:CN119067441A
公开(公告)日:2024-12-03
申请号:CN202411062666.X
申请日:2024-08-05
Applicant: 北京卫星环境工程研究所
IPC: G06Q10/0635 , G06Q50/04 , G06T19/00 , G06T7/73 , G06T7/246
Abstract: 本发明提供一种基于虚拟现实的航天器总装碰撞类差错风险评估方法,包括,分别构建与人体模型和运动物体模型绑定的等距包络体模型;在进行装配工作仿真时,基于采样频率在不同采样点获取等距包络体模型的仿真位置;在每个采样点,对虚拟场景中的可碰撞物体进行遍历,确定可碰撞物体与仿真位置对应的等距包络体模型的布尔交集体,并在布尔交集体不为空时,确定为风险区域;以等距包络体模型的风险等级作为风险区域的指定风险等级;确定布尔交集体对应的采样点的指定风险系数,确定碰撞风险等级,通过仿真测试,对风险区域内的碰撞风险进行量化确定,更清晰地通过碰撞风险等级确定出存在的风险程度,更有助于为装配操作提供科学指导。
-
公开(公告)号:CN119067440A
公开(公告)日:2024-12-03
申请号:CN202411062665.5
申请日:2024-08-05
Applicant: 北京卫星环境工程研究所
IPC: G06Q10/0635 , G06Q50/04 , G06T19/00 , G06T7/246 , G06T7/73
Abstract: 本发明提供一种基于增强现实的航天器总装碰撞类差错风险抑止方法,通过构建包含风险包络模型、人体模型和跟踪物体模型的虚拟场景;基于虚拟场景和增强现实头盔的虚实融合,向总装人员展示碰撞风险内容;分别对总装人员和跟踪物体进行实时位姿跟踪,确定总装人员和跟踪物体的实时位姿;将总装人员和跟踪物体的实时位姿同步至虚拟场景中的人体模型和跟踪物体模型;对虚拟场景中的风险包络模型进行遍历,确定与同步后的人体模型和跟踪物体模型的几何干涉数据;基于几何干涉数据,调整碰撞风险内容,通过将人体和物品在真实场景中的数据在虚拟场景中进行模拟,结合增强现实的方式碰撞等级的监测,能够及时地进行风险预警,降低了发生碰撞带来的影响。
-
公开(公告)号:CN115731170A
公开(公告)日:2023-03-03
申请号:CN202211421876.4
申请日:2022-11-14
Applicant: 北京卫星环境工程研究所
Abstract: 本技术属于装配制造领域,具体涉及一种用于离散制造行业的人工装配操作工艺引导系统。所述装配工艺引导系统包括工艺设计模块、工艺投影引导模块、状态检测模块,所述工艺设计模块用于生成装配体三维结构化工艺数据包;所述工艺投影引导模块实现工艺引导模型与物理对象的虚实融合,将投影面片和工艺信息投影在在装配对象指定位置,以直观的形式呈现给操作人员;所述状态检测模块用于对装配结果进行检验。所述装配工艺引导系统可避免诸如混淆、遗忘、过渡作业等失误,最小化工艺文件查阅、做标识等非增值性作业项目,提升产品装配效率以及质量稳定性。
-
公开(公告)号:CN119388441A
公开(公告)日:2025-02-07
申请号:CN202411785192.1
申请日:2024-12-06
Applicant: 北京卫星环境工程研究所
IPC: B25J9/16
Abstract: 本说明书实施例提供机器人力控速率自适应调整方法及装置,其中机器人力控速率自适应调整方法包括:获取力传感器数据;其中,力传感器数据为机器人的末端作用力信息;基于力传感器数据进行频谱分析,确定频谱分析结果;基于频谱分析结果确定力反馈控制系数;基于力反馈控制系数确定力反馈修正量,并基于力反馈修正量对机器人力控速率进行调整。通过对机器人末端作用力采样数据进行频谱分析的方式,进行机器人力反馈系数的自动计算与更新,实现机器人力控速率的自适应调整。与传统人工调节的方式相比,免除相关应用中对作业人员经验的依赖,并提高应用效率。
-
-
-
-
-
-
-
-
-