双模摩擦纳米发电机及关节转动状态监测方法

    公开(公告)号:CN116742989A

    公开(公告)日:2023-09-12

    申请号:CN202310592675.9

    申请日:2023-05-24

    Applicant: 燕山大学

    Abstract: 本发明提供一种双模摩擦纳米发电机及关节转动状态监测方法,其包括定子组件和转子组件。定子组件,包括第一亚克力板、第一电极、第二电极和第三电极,第一电极和第二电极沿着第一亚克力板的径向交替均匀分布,第三电极位于第一亚克力板的中部,第一电极、第二电极和第三电极由PET薄膜封装,第一电极和第二电极组成径向阵列电极,第三电极组成阿基米德螺旋电极。本发明通过计算径向阵列电极产生脉冲信号的数量实现关节转动角度和转动速度的监测,通过阿基米德螺旋电极输出电压信号的增大和减小趋势实现关节转动方向的识别,结构设计降低了制造的复杂性,传感机制简化了信号处理算法。

    液压四足机器人机电液控感仿真平台搭建方法

    公开(公告)号:CN115416017A

    公开(公告)日:2022-12-02

    申请号:CN202210987039.1

    申请日:2022-08-17

    Applicant: 燕山大学

    Abstract: 本发明提供了一种液压四足机器人机电液控感仿真平台搭建方法,其包括:通过足端轨迹规划模块,对液压四足机器人的足端轨迹进行规划,通过运动学模块得到液压四足机器人D‑H坐标角,通过关节空间与液压驱动单元行程映射模块得到液压驱动单元期望行程,通过液压驱动单元位置控制模块得到液压驱动单元实际旋转角度和实际行程,在MatlabSimMechanics工具箱中建立动力学模型模块,根据各模块间信号流转与各关节驱动单元受力与负载力之间的关系,共同构建得到液压四足机器人机电液控感仿真平台,进而验证所建立的液压四足机器人机电液控感仿真平台的行程和速度结果的准确性。本发明借助Matlab中SimMechanics工具箱,对液压四足机器人进行模块化仿真设计,缩短设计和优化周期。

    液压泵的流体压力脉动抑制方法

    公开(公告)号:CN115288966A

    公开(公告)日:2022-11-04

    申请号:CN202210896722.4

    申请日:2022-07-28

    Applicant: 燕山大学

    Abstract: 本发明提出了一种液压泵的流体压力脉动抑制方法,其包括如下步骤:S1、根据系统流量要求设置包括多个液压泵的泵组;S2、根据液压泵脉动参数确定液压泵流量脉动幅值与频率,并计算优化后液压泵实时流量;S3、实时调节泵组的流量周期相位差,使泵组的实时流量周期相位差与初始流量周期相位差一致;S4、采集压力传感器的压力信号;S5、构建与压力信号频率一致且相位相反的正弦信号,根据压力波动控制溢流阀开度,抑制泵后压力波动。本发明在蓄能器被动滤波的基础上增加多液压泵主动滤波,实现全频段滤波,并利用压力信号进一步提高溢流阀压力波动抑制效果,将泵源进行液压泵组配置,易于操作,系统简单且便于控制。

    三通比例减压阀死区及滞环补偿方法

    公开(公告)号:CN115037142A

    公开(公告)日:2022-09-09

    申请号:CN202210575534.1

    申请日:2022-05-24

    Applicant: 燕山大学

    Abstract: 本发明涉及一种三通比例减压阀死区及滞环补偿方法,其包括以下步骤,步骤一:搭建系统平台,获得期望输入激励电流与实际输入激励电流间的关系;步骤二:确定实际输入激励电流与输出压力的关系;步骤三:将获得的实际输入激励电流与输出压力之间的关系进行多项式拟合;步骤四:确定期望输入激励电流与实际输入激励电流的具体关系表达式,补偿减压阀的死区和滞环。本发明通过多项式拟合计算期望输出压力下的期望激励电流,完成了对三通比例减压阀死区和滞环的补偿;能兼顾三通比例减压阀的死区和滞环,针对二者同时进行补偿;与传统硬件补偿方法相比,无需额外添加硬件检测电路,结构更加简单,计算结果更准确。

    电机和气泵混合驱动的机械手

    公开(公告)号:CN114750175A

    公开(公告)日:2022-07-15

    申请号:CN202210260395.3

    申请日:2022-03-16

    Applicant: 燕山大学

    Abstract: 本发明提供一种电机和气泵混合驱动的机械手,其包括驱动机构、支撑组件、夹取机构和气动组件,驱动机构的滚珠丝杠通过连接件与支撑组件的第二支撑座旋转配合连接,驱动机构的驱动电机固定安装在支撑组件的电机支座上,夹取机构的驱动臂和平行臂分别与支撑组件的第一支撑座旋转连接,气动组件的九通接头通过管路与夹取机构的管接头连接,气动组件的气泵固定安装在支撑组件的气泵支座上,本发明能根据使用环境决定末端执行器对目标物体采用抓取或吸取方式,更好地适应不同场景和具有不同形状尺寸的物体,解决了现有的机械手功能单一的问题,实现生产的自动化和机械化,具有结构简单、适应性强、功能实用、方便操作、工作效率高等优点。

    机器人阀控缸驱动器自适应反馈线性化控制方法及系统

    公开(公告)号:CN112476439B

    公开(公告)日:2021-11-23

    申请号:CN202011313086.5

    申请日:2020-11-20

    Applicant: 燕山大学

    Abstract: 本发明涉及一种机器人阀控缸驱动器自适应反馈线性化控制方法及系统。该方法包括:根据机器人关节阀控缸驱动器系统数学模型,建立状态空间表达式;基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数;获取非线性扩张状态观测器;基于非线性扩张状态观测器得到系统总扰动;基于状态空间表达式,利用反馈机制消除系统总扰动,得到更新后的系统状态空间表达式;基于更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律;基于控制律对机器人关节阀控缸驱动器进行控制。本发明可以提升系统对参数微变的自适应能力,从而提升机器人关节驱动器的控制性能。

    一种足式机器人腿部一维力传感器标定方法及系统

    公开(公告)号:CN113091999A

    公开(公告)日:2021-07-09

    申请号:CN202110354203.0

    申请日:2021-04-01

    Applicant: 燕山大学

    Abstract: 本发明涉及一种足式机器人腿部一维力传感器标定方法及系统,通过上位机对腿部驱动系统进行位置控制,并利用二维力传感器对足端进行力加载,得到各关节一维力传感器实际检测值,然后利用计算机软件搭建腿部驱动系统虚拟模型,将二维力传感器和各关节驱动单元位移传感器实际检测值输入虚拟模型中进行仿真,得到虚拟模型中各关节一维力传感器的理论检测值,最后利用最小二乘法求得各关节一维力传感器实际检测值和理论检测值之间的标定曲线,并根据标定曲线求得各关节修正标定的系数,通过此系数对一维力传感器进行标定,本发明的上述方法在不拆卸力传感器的情况下,实现了对一维力传感器的重新标定。

    一种电液执行器及其控制方法

    公开(公告)号:CN111706569A

    公开(公告)日:2020-09-25

    申请号:CN202010611041.X

    申请日:2020-06-29

    Applicant: 燕山大学

    Abstract: 本发明公开了一种电液执行器及其控制方法,所述电液执行器包括伺服缸、喷嘴挡板伺服阀、力传感器、位移传感器和运动控制器;所述伺服缸的缸体上集成设置有进油仿生流道、无杆腔仿生流道、有杆腔仿生流道和回油仿生流道;本发明通过伺服缸、喷嘴挡板伺服阀、力传感器、位移传感器和运动控制器的集成设置,实现了多元器件的高密度集成,体积小、重量轻,并利用仿生流道实现伺服缸与喷嘴挡板伺服阀的连通,无需设置连接管路,实现了喷嘴挡板伺服阀与伺服缸间无外接管路,降低了高端移动装备管路接头损坏和泄漏故障发生率,通过配套设置的运动控制器、力传感器和位移传感器实现伺服缸的控制,本发明提供了一种高度集成的一体化智能电液执行器。

    基于位置的阻抗控制系统变阻抗特性补偿控制方法及系统

    公开(公告)号:CN110308648A

    公开(公告)日:2019-10-08

    申请号:CN201910623646.8

    申请日:2019-07-11

    Applicant: 燕山大学

    Abstract: 本发明公开了一种基于位置的阻抗控制系统变阻抗特性补偿控制方法及系统。该方法包括获取伺服缸的输入位置、干扰力和阻抗特性;对阻抗特性进行补偿,得到补偿后的阻抗特性;根据伺服缸的输入位置、干扰力和补偿后的阻抗特性计算阻抗特性参数;根据阻抗特性参数计算伺服缸的输出位置。采用本发明的方法及系统,能够有效提高液压驱动单元基于位置阻抗控制系统的控制精度和抗干扰性能。

    一种带有多方向自主避障功能的小型足式气动爬行机器人

    公开(公告)号:CN110244737A

    公开(公告)日:2019-09-17

    申请号:CN201910559984.X

    申请日:2019-06-26

    Applicant: 燕山大学

    Abstract: 本发明公开一种带有多方向自主避障功能的小型足式气动爬行机器人,包括机器主体、气动系统和传感控制系统,所述机器主体包括上层亚克力板、下层钢板、两条滑轨、四条支撑腿和支撑板,所述气动系统包括第一单轴气动缸、第二单轴气动缸、双轴气动缸和三个电磁换向阀,固定于所述机器主体上并用于控制所述气动系统运动的所述传感控制系统包括单片机、红外模块和超声波传感模块,所述红外模块、超声波传感模块均与所述单片机信号链接。该机器人控制简单、动作流畅自然,通过在机器人机身上设置多个红外传感器和超声波传感器探测周围的障碍物,此时通过单片机输出相应的控制信号,控制机器人做出的移动,实现自动避障。

Patent Agency Ranking