-
公开(公告)号:CN112476439B
公开(公告)日:2021-11-23
申请号:CN202011313086.5
申请日:2020-11-20
Applicant: 燕山大学
IPC: B25J9/20
Abstract: 本发明涉及一种机器人阀控缸驱动器自适应反馈线性化控制方法及系统。该方法包括:根据机器人关节阀控缸驱动器系统数学模型,建立状态空间表达式;基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数;获取非线性扩张状态观测器;基于非线性扩张状态观测器得到系统总扰动;基于状态空间表达式,利用反馈机制消除系统总扰动,得到更新后的系统状态空间表达式;基于更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律;基于控制律对机器人关节阀控缸驱动器进行控制。本发明可以提升系统对参数微变的自适应能力,从而提升机器人关节驱动器的控制性能。
-
公开(公告)号:CN115389065A
公开(公告)日:2022-11-25
申请号:CN202210917954.3
申请日:2022-08-01
Applicant: 燕山大学
IPC: G01L1/20 , G01L1/22 , G01L5/1627 , B25J13/08
Abstract: 本发明涉及一种基于裂纹传感器的机器人足端多维力检测方法及足端装置,其包括以下步骤,步骤一:在机器人足端安装裂纹传感器,检测受到的外力;步骤二:根据裂纹传感器检测到的外力确定足端受到的作用力;步骤三:计算足端的受力方向,并判断足端是否打滑,调整机器人步态;步骤四:确定机器人足端受到的多维力。本发明通过裂纹传感器将力的变化转换成电压信号的变化,通过对足端受力模型的分析构建了足端多维力检测方法,实现了机器人触地力的实时检测,检测结果准确可靠;本发明提出的足端装置通过改变基座的半径能够与多种结构形式的机器人小腿结构相适应,进行装置整体的快速安装,本装置结构合理,提高检测装置的普适性。
-
公开(公告)号:CN117245660A
公开(公告)日:2023-12-19
申请号:CN202311335906.4
申请日:2023-10-16
Applicant: 燕山大学
Abstract: 本发明涉及一种机器人液压动力源压力和流量匹配控制方法,其包括:S1、建立液压动力源关键元件的数学模型;S2、根据液压动力源关键元件的数学模型搭建机器人轨迹规划模型与运动学模型,确定液压动力源的实时压力和流量特性;S3、通过前馈补偿提高响应速度,建立机器人液压动力源的流量闭环控制环节;S4、建立压力向流量的转换关系,实现机器人液压动力源压力和流量匹配控制。本发明通过机器人液压动力源分析与建模,完成了对机器人轨迹规划与运动学分析,建立压力特性与流量特性之间的转换关系,实现液压动力源压力和流量进行匹配控制,使得压力和流量输出与机器人的实际需求相匹配,满足实际应用需求。
-
公开(公告)号:CN112476439A
公开(公告)日:2021-03-12
申请号:CN202011313086.5
申请日:2020-11-20
Applicant: 燕山大学
IPC: B25J9/20
Abstract: 本发明涉及一种机器人阀控缸驱动器自适应反馈线性化控制方法及系统。该方法包括:根据机器人关节阀控缸驱动器系统数学模型,建立状态空间表达式;基于非线性误差函数和多项式函数,获取连续光滑的非线性误差函数;获取非线性扩张状态观测器;基于非线性扩张状态观测器得到系统总扰动;基于状态空间表达式,利用反馈机制消除系统总扰动,得到更新后的系统状态空间表达式;基于更新后的系统状态空间表达式,利用反步法,并依据李雅普诺夫稳定性定理,确定机器人阀控缸驱动器自适应反馈线性化控制的控制律;基于控制律对机器人关节阀控缸驱动器进行控制。本发明可以提升系统对参数微变的自适应能力,从而提升机器人关节驱动器的控制性能。
-
公开(公告)号:CN115389065B
公开(公告)日:2025-05-09
申请号:CN202210917954.3
申请日:2022-08-01
Applicant: 燕山大学
IPC: G01L1/20 , G01L1/22 , G01L5/1627 , B25J13/08
Abstract: 本发明涉及一种基于裂纹传感器的机器人足端多维力检测方法及足端装置,其包括以下步骤,步骤一:在机器人足端安装裂纹传感器,检测受到的外力;步骤二:根据裂纹传感器检测到的外力确定足端受到的作用力;步骤三:计算足端的受力方向,并判断足端是否打滑,调整机器人步态;步骤四:确定机器人足端受到的多维力。本发明通过裂纹传感器将力的变化转换成电压信号的变化,通过对足端受力模型的分析构建了足端多维力检测方法,实现了机器人触地力的实时检测,检测结果准确可靠;本发明提出的足端装置通过改变基座的半径能够与多种结构形式的机器人小腿结构相适应,进行装置整体的快速安装,本装置结构合理,提高检测装置的普适性。
-
公开(公告)号:CN117245660B
公开(公告)日:2024-04-09
申请号:CN202311335906.4
申请日:2023-10-16
Applicant: 燕山大学
Abstract: 本发明涉及一种机器人液压动力源压力和流量匹配控制方法,其包括:S1、建立液压动力源关键元件的数学模型;S2、根据液压动力源关键元件的数学模型搭建机器人轨迹规划模型与运动学模型,确定液压动力源的实时压力和流量特性;S3、通过前馈补偿提高响应速度,建立机器人液压动力源的流量闭环控制环节;S4、建立压力向流量的转换关系,实现机器人液压动力源压力和流量匹配控制。本发明通过机器人液压动力源分析与建模,完成了对机器人轨迹规划与运动学分析,建立压力特性与流量特性之间的转换关系,实现液压动力源压力和流量进行匹配控制,使得压力和流量输出与机器人的实际需求相匹配,满足实际应用需求。
-
-
-
-
-