摘要:
There is provided a method of pinning domain walls in a magnetic memory device (10) comprising using an antiferromagnetic material to create domain wall pinning sites. Junctions (22) where arrays of ferromagnetic nanowires (16) and antiferromagnetic nanowires (20) cross exhibit a permanent exchange bias interaction between the ferromagnetic material and the antiferromagnetic material which creates domain wall pinning sites. The exchange bias field is between 30 to 3600 Oe and the anisotropy direction of the ferromagnetic elements is between 15 to 75° to an anisotropy direction of the antiferromagnetic elements.
摘要:
A racetrack memory cell device include a dielectric, an electrode disposed in the dielectric, a metal strap disposed in the dielectric, a nanowire disposed in the dielectric between the electrode and the metal strap and a magnetic tunnel junction disposed in the dielectric on the metal strap, and axially with the nanowire.
摘要:
A magnetic memory according to an embodiment includes: a plurality of groups of magnetic nanowires extending in a direction, each group of magnetic nanowires including at least one magnetic nanowire, each magnetic nanowire having a first terminal and a second terminal; a plurality of recording and reproducing elements corresponding to the groups of magnetic nanowires, each recording and reproducing element writing data to and reading data from magnetic nanowires of a corresponding group of magnetic nanowires, and connecting to the first terminals of the magnetic nanowires of the corresponding group of magnetic nanowires; and an electrode to which the second terminals of the magnetic nanowires of the groups of magnetic nanowires are connected.
摘要:
A shift register type magnetic memory according to an embodiment includes: a magnetic nanowire; a magnetic material chain provided in close vicinity to the magnetic nanowire, the magnetic material chain including a plurality of disk-shaped ferromagnetic films arranged along a direction in which the magnetic nanowire extends; a magnetization rotation drive unit configured to rotate and drive magnetization of the plurality of ferromagnetic films; a writing unit configured to write magnetic information into the magnetic nanowire; and a reading unit configured to read magnetic information from the magnetic nanowire.
摘要:
Embodiments are directed to injecting domain walls in a magnetic racetrack memory. In some embodiments, a racetrack comprising a nanowire is coupled with a gate in order to manipulate an anisotropy associated with the nanowire. The racetrack and gate is coupled with a pinning layer configured to establish a magnetization direction in the nanowire.
摘要:
A shift register, comprising an input circuit, a first control circuit, a second control circuit and an output circuit. The input circuit is configured to transmit a first voltage signal from a first voltage signal terminal to a first node under the control of an input signal from a signal input terminal. The first control circuit is configured to transmit a second voltage signal from a second voltage signal terminal to a second node under the control of a first clock signal from a first clock signal terminal and the voltage of the first node. The second control circuit is configured to transmit a second clock signal from a second clock signal terminal to a third node under the control of the voltage of the second node. The output circuit is configured to transmit the first voltage signal from the first voltage signal terminal to a scan signal output terminal under the control of the voltage of the third node.
摘要:
A magnetic artificial honeycomb lattice comprising a multiplicity of connecting elements separated by hexagonal cylindrical pores, wherein: (a) the hexagonal cylindrical pores: (i) have widths that are substantially uniform and an average width that is in a range of about 15 nm to about 20 nm; and (ii) are substantially equispaced and have an average center-to-center distance that is in a range of about 25 nm to about 35 nm; and (b) the connecting elements comprise a magnetic material layer, and the connecting elements have: (i) lengths that are substantially uniform and an average length that is in a range of about 10 nm to about 15 nm; (ii) widths that are substantially uniform and an average width that is in a range of about 4 nm to about 8 nm; and (iii) a thickness of the magnetic material layer that is substantially uniform and an average thickness that is in a range of about 2 nm to about 8 nm; and (c) the magnetic artificial honeycomb lattice has a surface area, disregarding the presence of the hexagonal cylindrical pores, that is in a range in a range of about 100 mm2 to about 900 mm2.
摘要:
According to one embodiment, a magnetic memory device includes first and second magnetic members, and a conductive member. The first magnetic member includes first, second, and third extending portions. The first extending portion extends along a first direction. The second extending portion extends along a second direction. The third extending portion includes a third connection portion connected with the first and second extending portions. The third extending portion extends along a third direction. The conductive member extends along a fourth direction. The first and second directions are inclined with respect to the fourth direction. The conductive member includes a portion overlapping at least parts of the first and second extending portions in a fifth direction. The fifth direction crosses the first, the second and the fourth directions. The conductive member includes a metal. A direction from the third extending portion toward the second magnetic member crosses the third direction.
摘要:
An integrated circuit that does not involve increase in power consumption or decrease in switching probability during a write operation that occur when a latch circuit using STT-MTJ device, etc. of the prior art is operated at high speed is provided. The integrated circuit 1 includes: a memory element 1B where write occurs when a specified period τ has elapsed after a write signal is input; and a basic circuit element 1A, which is an elementary device constituting a circuit and has a data retaining function, and characterized in that an operation frequency f1 in a first operation mode in the process of memory access of the basic circuit element 1A satisfies the following relation: τ>λ1/f1(0
摘要:
A shift register according to an embodiment includes: a magnetic nanowire; a first control electrode group and a second control electrode group arranged with the magnetic nanowire being sandwiched therebetween, the first control electrode group including a plurality of first control electrodes arranged to be spaced apart from each other along a direction in which the magnetic nanowire extends, the second control electrode group including a plurality of second control electrodes arranged to be spaced apart from each other to correspond to the plurality of first control electrodes along the direction in which the magnetic nanowire extends, and the second control electrodes corresponding to the first control electrodes being shifted in the direction in which the magnetic nanowire extends; a first driving unit for driving the first control electrode group; and a second driving unit for driving the second control electrode group.