Abstract:
According to one embodiment, a magnetic memory includes a first magnetic unit, a first magnetic layer, a first recording/reproducing element, a first electrode, and a second electrode. The first magnetic unit extends in a first direction. The first magnetic unit includes a plurality of magnetic domains arranged in the first direction. The first magnetic unit has a columnar configuration having a hollow portion. The first magnetic layer is connected to a first end portion of the first magnetic unit, the first magnetic layer extends in a direction intersecting the first direction. The first recording/reproducing element is provided in contact with the first magnetic layer. The first electrode is electrically connected to the first magnetic layer. The second electrode is connected to a second end portion of the first magnetic unit on a side opposite to the first end portion.
Abstract:
A magnetic memory according to an embodiment includes: a magnetic layer including a plurality of magnetic domains and a plurality of domain walls, and extending in a direction; a pinning layer formed with nonmagnetic phases and magnetic phases, extending in an extending direction of the magnetic layer and being located adjacent to the magnetic layer; an electrode layer located on the opposite side of the pinning layer from the magnetic layer; an insulating layer located between the pinning layer and the electrode layer; a current introducing unit flowing a shift current to the magnetic layer, the shift current causing the domain walls to shift; a write unit writing information into the magnetic layer; a read unit reading information from the magnetic layer; and a voltage generating unit generating a voltage to be applied between the pinning layer and the electrode layer.
Abstract:
According to one embodiment, a magnetic memory element comprises a first magnetic unit, a second magnetic unit, a first insulating unit, a first electrode, a second electrode, and a third electrode. The first magnetic unit includes a plurality of magnetic domains. The second magnetic unit includes a first region and a second region. The first region includes a conductive material. The second region includes an insulating material. At least one of the first region or the second region is magnetic. The first insulating unit is provided between the first magnetic unit and the second magnetic unit. The first electrode and the second electrode are connected to the first magnetic unit. A part of the second magnetic unit and a part of the first insulating unit are provided between the third electrode and a part of the first magnetic unit.
Abstract:
According to one embodiment, a magnetic memory element includes a first magnetic unit, a second magnetic unit, a third magnetic unit, a read/write unit, a first electrode, a second electrode, a third electrode, a first current source, the second current source. The third magnetic unit is connected to one end in the first direction of the first magnetic unit and one end in the first direction of the second magnetic unit. The read/write unit includes a nonmagnetic layer and a pinned layer. The nonmagnetic layer is connected to the third magnetic unit. The pinned layer is connected to the nonmagnetic layer. The first current source causes a current to flow between the third electrode and at least one of the first electrode or the second electrode. The second current source causes a current to flow between the first electrode and the second electrode.
Abstract:
A magnetic storage element includes a magnetic nanowire. A cross-section of the magnetic nanowire has first and second visible outlines, the first visible outline has a first minimal point at which a distance from a virtual straight line becomes minimal, a second minimal point at which the distance from the virtual straight line becomes minimal, and a first maximal point at which the distance from the virtual straight line becomes longest between the first minimal point and the second minimal point, and an angle between a first straight line connecting the first minimal point and the second minimal point, and one of a second straight line connecting the first minimal point and the first maximal point and a third straight line connecting the second minimal point and the first maximal point is not smaller than four degrees and not larger than 30 degrees.
Abstract:
A magnetic memory device comprises a first electrode, a second electrode, a laminated structure comprising plural first magnetic layers being provided between the first electrode and the second electrode, a second magnetic layer comprising different composition elements from that of the first magnetic layer and being provided between plural first magnetic layers, a piezoelectric body provided on a opposite side to a side where the first electrode is provided in the laminated structure, and a third electrode applying voltage to the piezoelectric body and provided on a different position from a position where the first electrode is provided in the piezoelectric body.
Abstract:
A magnetic memory includes a magnetic wire, a first insulating layer, first electrodes a second electrode, a current supplying module, and a voltage applying module. The magnetic wire includes a first portion and a second portion, has a first electric resistance value, and is configured to form magnetic domains. The first electrodes are formed on the first insulating layer, arranged along the magnetic wire, and spaced from each other. The second electrode includes a third portion and a fourth portion. The second electrode is electrically connected to the first electrodes between the third portion and the fourth portion and has a second electric resistance value being larger than the first electric resistance value. The current supplying module is configured to supply the magnetic wire with a pulse current. The voltage applying module is configured to apply a voltage that decreases with time.
Abstract:
A magnetic memory includes a magnetic wire, a first insulating layer, first electrodes a second electrode, a current supplying module, and a voltage applying module. The magnetic wire includes a first portion and a second portion, has a first electric resistance value, and is configured to form magnetic domains. The first electrodes are formed on the first insulating layer, arranged along the magnetic wire, and spaced from each other. The second electrode includes a third portion and a fourth portion. The second electrode is electrically connected to the first electrodes between the third portion and the fourth portion and has a second electric resistance value being larger than the first electric resistance value. The current supplying module is configured to supply the magnetic wire with a pulse current. The voltage applying module is configured to apply a voltage that decreases with time.
Abstract:
According to one embodiment, a magnetic memory device includes a first memory unit including a first memory array and a first drive unit, a second memory unit including a second memory array and a second drive unit, and a controller. The first memory array includes a first magnetic shift register unit. The second memory array includes a second magnetic shift register unit. The controller subdivides input data into a plurality of one-dimensional bit input arrays. The one-dimensional bit input arrays include a first array and a second array. The controller stores the first array in the first magnetic shift register unit on a last in, first out basis, and stores the second array in the second magnetic shift register unit on a last in, first out basis.
Abstract:
A magnetic memory element includes a first magnetic unit, a second magnetic unit, a third magnetic unit, a read/write unit, a first electrode, a second electrode, a third electrode, a first current source, the second current source. The third magnetic unit is connected to one end in the first direction of the first magnetic unit and one end in the first direction of the second magnetic unit. The read/write unit includes a nonmagnetic layer and a pinned layer. The nonmagnetic layer is connected to the third magnetic unit. The pinned layer is connected to the nonmagnetic layer. The first current source causes a current to flow between the third electrode and at least one of the first electrode or the second electrode. The second current source causes a current to flow between the first electrode and the second electrode.