Abstract:
System on a Chip (SoC) devices include two packetized memory buses for conveying local memory packets and system interconnect packets. In an in-situ configuration of a data processing system two or more SoCs are coupled with one or more hybrid memory cubes (HMCs). The memory packets enable communication with local HMCs in a given SoC's memory domain. The system interconnect packets enable communication between SoCs and communication between memory domains. In a dedicated routing configuration each SoC in a system has its own memory domain to address local HMCs and a separate system interconnect domain to address HMC hubs, HMC memory devices, or other SoC devices connected in the system interconnect domain.
Abstract:
Optical networks may store information or data therein by maintaining the information or data in motion. The optical networks may include optical fiber rings configured to receive optical signals comprising the information or data and to circulate the optical signals within the optical fiber rings. The optical signals and the information or data may be transferred out of the optical fiber rings in order to amplify the optical signals (e.g., to overcome losses due to attenuation within the optical fiber rings), to analyze the optical signals according to one or more processing techniques, or to transfer the information or data to another computer device upon request. If continued storage of the information or data is required, an optical signal including the information or data may be transferred back into the optical fiber rings and may continue to circulate therein.
Abstract:
We disclose an optical buffer having a plurality of optical ports. In some embodiments, an optical signal to be stored may be injected into the buffer through any one of the optical ports and then may be ejected from the buffer, after being stored therein for a selectable amount of time, through any one of the optical ports as well. This feature advantageously enables the optical buffer to also function as an optical switch or router. In an example embodiment, the optical buffer comprises two optical recirculation loops, each of which can store the optical signal by causing it to circulate therein. The buffer is configured to compensate optical losses incurred by the optical signal during this circulation by transferring the optical signal from one loop to the other through an optical amplifier. Due to the latter feature, the optical buffer may be able to store an optical signal, with an acceptable OSNR, for a significantly longer time than certain conventional optical buffers.
Abstract:
Systems and methods of queuing data for multiple readers and writers are provided. Enqueuing operations are disclosed that can process write functionality and can determine whether ring buffers have potentially filled, and dynamically declare a new ring buffer at a multiple of capacity of the current ring. Dequeuing operations are disclosed that can process read functionality for advancing control and determining whether and when to free ring buffers from memory.
Abstract:
A memory component includes a memory core comprising dynamic random access memory (DRAM) storage cells and a first circuit to receive external commands. The external commands include a read command that specifies transmitting data accessed from the memory core. The memory component also includes a second circuit to transmit data onto an external bus in response to a read command and pattern register circuitry operable during calibration to provide at least a first data pattern and a second data pattern. During the calibration, a selected one of the first data pattern and the second data pattern is transmitted by the second circuit onto the external bus in response to a read command received during the calibration. Further, at least one of the first and second data patterns is written to the pattern register circuitry in response to a write command received during the calibration.
Abstract:
According to one embodiment, a magnetic memory element includes: a magnetic wire, a stress application unit, and a recording/reproducing unit. The magnetic wire includes a plurality of domain walls and a plurality of magnetic domains separated by the domain walls. The magnetic wire is a closed loop. The stress application unit is configured to cause the domain walls to circle around along the closed loop a plurality of times by applying stress to the magnetic wire. The recording/reproducing unit is configured to write memory information by changing magnetizations of the circling magnetic domains as the domain walls circle around and to read the written memory information by detecting the magnetizations of the circling magnetic domains.
Abstract:
An optical linear feedback circuit has an optical loop delay path (10) for recirculating a sequence of optical signals, and an output path for outputting delayed optical signals after circulating one or more times around the loop. A selector (50) is provided for selecting one or more of the delayed optical signals from the sequence, and an optical logic circuit (20) is coupled to carry out a logical operation on the selected delayed optical signals to create an optical feedback signal which is coupled to the optical loop delay path, so that the optical feedback signal can be added to the sequence of optical signals already circulating. By recirculating around a loop, each round trip can be regarded as equivalent to a shift of a shift register, so longer sequences can be built up without needing an additional storage cell for each shift function.
Abstract:
A memory circuit may include a shift register ring including single-bit shift registers. The circuit may include a clock connected to the shift registers to shift bits within the shift register ring, and a counter connected to the clock and indicating positions of the bits in the shift register ring.
Abstract:
Methods and system for modeling the behavior of binary synapses are provided. In one aspect, a method of modeling synaptic behavior includes receiving an analog input signal and transforming the analog input signal into an N-bit codeword, wherein each bit of the N-bit codeword is represented by an electronic pulse (1001). The method includes loading the N-bit codeword into a circular shift register (1002) and sending each bit of the N-bit codeword through one of N switches. Each switch applies a corresponding weight to the bit to produce a weighted bit. A signal corresponding to a summation of the weighted bits is output and represents a synaptic transfer function characterization of a binary synapse (1009).
Abstract:
A phase change memory device includes a memory cell array, a register unit and a control unit. The memory cell array includes a plurality of phase change memory cells. The register unit includes a circular queue. The control unit receives a write address and a write data in a write mode, programs the write data in a phase change memory cell corresponding to the write address among the plurality of phase change memory cells, provides the write address and the write data to the register unit, and outputs a write complete signal before a phase of the phase change memory cell is stabilized or after the phase of the phase change memory cell is stabilized based on a logic level of a first result signal received from the register unit. The phase change memory device increases a programming speed.