摘要:
A permeable base transistor (30) including a metal base layer (34) embedded in a semiconductor crystal (32) to separate collector (38) and emitter (40) regions and form a Schottky barrier with each is disclosed. The metal base layer has at least one opening (37) through which the crystal semiconductor (32) joins the collector (38) and emitter (40) regions. Ohmic contacts (42,44) are made to the emitter (38) and collector (40) regions. The width of all openings (37) in the base layer (34) is of the order of the zero bias depletion width corresponding to the carrier concentration in the opening. The thickness of the metal layer (34) is in the order of 10% of this zero bias depletion width. As a result, a potential barrier in each opening limits current flow over the lower portion of the bias range. With increasing forward base bias the potential in the openings, which is lower than along the metal of the base layer (34), is lowered sufficiently to permit substantial increase in the barrier limited current flow from the collector (38) to emitter (40).A method of fabricating this transistor as well as methods for forming integrated circuit structures are also disclosed. Metal and other layers may be selectively embedded in semiconductor crystal. Embedded metal layers may serve as interconnections between devices. Devices may be in a stacked configuration.
摘要:
A self-aligned process for fabricating a GaAs semiconductor MESFET by depositing a layer of tungsten over the GaAs substrate, and ion implanting the substrate to provide channel doping. A gate composed of a conductive refractory material is deposited and delineated on the tungsten layer, and source and drain regions are formed in the substrate using the gate as a mask. The resulting device is annealed and contacts are formed to the source and drain regions, and to the gate.
摘要:
Alternately repeated layers of metal epitaxy on semiconductor substrates and semiconductor epitaxy on metal substrates are grown in an ultra-high vacuum evaporation system by first depositing the metal film on the clean surface of the semiconductor substrate over the temperature range between room temperature and 400*C; and then depositing the semiconductor film on the clean surface of the metal over the temperature range between 500*C and 600*C.
摘要:
A semiconductor device comprising in combination: a first zone of semiconductive material containing impurity atoms of the acceptor type; a contiguous second zone of semiconductive material containing a predetermined low concentration of impurity atoms of the donor type; a metal layer having an interface with said second zone; and a third zone of relatively highly conductive semiconductive material in contact with said metal layer and containing a high concentration of impurity atoms of either the donor or acceptor type. In a typical device in accordance with this invention the ''''first zone'''' is formed as a P+ diffusion area in the ''''second zone'''' which is of the Nconductivity type of silicon, the ''''metal'''' is platinum, the ''''third zone'''' is formed by P+ diffusion into a monocrystalline silicon wafer, and emitter, base and collector leads are in contact with said first, second and third zones, respectively.
摘要:
In a Schottky field effect MESFET transistor including a semiconductor substrate and source, gate and drain electrodes, the electrical resistance of the gate is reduced to substantially zero by implementing the gate electrode as a sheet of metallization which bypasses a portion of the source electrode and which is spaced from the source electrode by a layer of air or the like. The MESFET transistor may be fabricated by providing drain and source electrodes on a semiconductor substrate with the electrodes situated side-by-side. Photoresist is applied over at least the source electrode while leaving exposed (a) a first portion of the substrate surface between the source and drain electrodes and (b) a second portion of the substrate surface situated on an opposite side of the source electrode and which is used as a bonding pad location. Gate metallization is then formed over the photoresist and in contact with the first and second areas of the substrate surface. The metallization may also extend over the drain electrode that is later removed. Upon removal of the photoresist from between the gate and source electrodes, a layer of air of the like dielectrically separates these electrodes from each other. A portion of the gate metallization that overlies the drain electrode may exist as a tail that may have various lengths to make possible a non-critical patterning step for the gate metallization.
摘要:
A process for fabricating a semiconductor-metal-semiconductor electronic device and the device formed thereby from a semiconductor substrate is described. The substrate forms a first active region of the device. A porous layer of conductive material is deposited on the substrate preferably by molecular beam epitaxy forming a control region. A layer of a semiconductor material epitaxially matched to the substrate is then grown on the layer of conductive material so that the layer of semiconductor material forms a second active region of an electronic device.