Abstract:
A low-leakage resistive random access memory cell includes a complementary pair of bit lines and a switch node. A first ReRAM device is connected to a first one of the bit lines. A p-channel transistor has a source connected to the ReRAM device, a drain connected to the switch node, and a gate connected to a bias potential. A second ReRAM device is connected to a second one of the bit lines. An n-channel transistor has a source connected to the ReRAM device a drain connected to the switch node, and a gate connected to a bias potential.
Abstract:
A representative level-shifter comprises a dynamically biased current source circuit that receives a first voltage, a first and a second unidirectional current-conducting devices, a first and a second pull-down devices, and a pull-up device. The first and second unidirectional current-conducting devices are coupled to the dynamically biased current source circuit. A voltage output of the level-shifter is located at a first node that is located between the current-constant circuit and the second unidirectional current-conducting device. The first and second pull-down devices are coupled to the first and second unidirectional current-conducting devices, respectively. The pull-up device receives a second voltage and is coupled to the dynamically biased current source circuit and the first unidirectional current-conducting device. The pull-up device is configured to dynamically bias the dynamically biased current source circuit such that a voltage drop of the second unidirectional current-conducting device is output at the voltage output responsive to the pull-up device outputting the second voltage to the dynamically biased current source circuit, the first pull-down device being non-conducting and the second pull-down device being conducting.
Abstract:
A representative level-shifter comprises a dynamically biased current source circuit that receives a first voltage, a first and a second unidirectional current-conducting devices, a first and a second pull-down devices, and a pull-up device. The first and second unidirectional current-conducting devices are coupled to the dynamically biased current source circuit. A voltage output of the level-shifter is located at a first node that is located between the current-constant circuit and the second unidirectional current-conducting device. The first and second pull-down devices are coupled to the first and second unidirectional current-conducting devices, respectively. The pull-up device receives a second voltage and is coupled to the dynamically biased current source circuit and the first unidirectional current-conducting device. The pull-up device is configured to dynamically bias the dynamically biased current source circuit such that a voltage drop of the second unidirectional current-conducting device is output at the voltage output responsive to the pull-up device outputting the second voltage to the dynamically biased current source circuit, the first pull-down device being non-conducting and the second pull-down device being conducting.
Abstract:
A merged enhancement/depletion-mode FET circuit and a complementary FET logic circuit have enhanced operation speed and reduced power dissipation. Serially connected depletion mode and enhancement mode transistors function as an output stage for the complementary FET logic stage, with the gate of an n-channel enhancement-mode transistor being connected to the output of the complementary FET logic stage and the output of an n-channel depletion-mode transistor being connected to the common terminal or output terminal of the output stage. In an alternative embodiment, a p-channel enhancement-mode transistor is connected in parallel with the n-channel depletion-mode transistor with the gate of the p-channel enhancement-mode transistor being connected to the output of the complementary FET logic stage. The circuitry is particularly useful in compound semiconductor circuits using MESFETS and heterojunction-FETs.
Abstract:
A semiconductor device capable of stable operation with low power consumption is provided. A logic circuit having a circuit configuration using a transistor including an oxide semiconductor in a channel formation region is included. The logic circuit is a two-input/two-output two-wire logic circuit. Transistors included in the logic circuit each include a gate and a back gate. An input terminal is electrically connected to one of a gate and a back gate of a transistor electrically connected to a wiring for supplying a high power supply potential. An output terminal is connected to the other of the gate and the back gate of the transistor electrically connected to the wiring for supplying a high power supply potential. An output terminal is electrically connected to one of a source and a drain of a transistor electrically connected to a wiring for supplying a low power supply potential. A gate or a back gate of the transistor electrically connected to the wiring for supplying a low power supply potential is electrically connected to an input terminal.
Abstract:
A tristate gate includes an output port and at least two transistors. Each of the transistors has at least a first and a second gate configured such that a high-impedance value (Z) on the output port is set by controlling the threshold voltage of at least one of the transistors.
Abstract:
A Field Programmable Gate Array (FPGA) of the island-type comprising a plurality of cluster-based Configurable Logic Blocks (CLBs), whereby each of the cluster-based CLBs is surrounded by a global routing structure formed by a plurality of multiplexers and pass/transmission-gates organized in Switch Boxes (SBs) and Connection Blocks (CBs), the switch boxes and the connection blocks comprising at least a first plurality of resistive memories inserted in a data path of a first routing architecture of the switch boxes and the connection blocks. Each CLB contains Basic Logic Elements (BLEs), as well as local routing resources.
Abstract:
A digital adder circuit comprising a plurality of logical stages in the carry logic of said adder circuit, for generating and propagating predetermined groups of operand bits, each stage implementing a predetermined logic function and processing input variables from a preceding stage and outputting result values to a succeeding stage static and dynamic logic in the carry network of a 4-bit adder, and with output from the first stage fed directly as an input (60, 62) to the third stage of the carry network. Preferably, stages having normally relatively high switching activities are implemented in static logic. Preferably, the first stage of its carry network is implemented in a static logic, and the rest of the stages in dynamic logic.
Abstract:
Leakage currents at IC inputs can be avoided while the IC is disabled by providing a switch that is responsive to deactivation of an enable input to isolate functional circuitry of the IC from one of the power supply nodes of the IC. This eliminates power supply current while the IC is disabled. Further unwanted current flow can be avoided while the IC is disabled by providing a switch that is responsive to the enable input for selectively connecting and disconnecting the base of a reference voltage transistor to and from the transistor's grounded collector, which collector is defined by the substrate of the IC. Disconnection of the base from the grounded substrate/collector eliminates base current and thus prevents emitter-to-collector current flow through the transistor when the IC is disabled.
Abstract:
A method, implemented in a serializer for quarter rate serialization, is disclosed. The method includes receiving a plurality of in-phase and quarter-phase clock signals defining a quarter phase clock. The method includes receiving a quarter rate data input and sequentially outputting data in accordance with the quarter phase clock. The method includes receiving at least one data input from amongst the quarter rate input and outputting a first logical output in accordance with the in-phase clock signal and the quarter-phase clock signal. The method includes receiving said at least one data input and outputting a second logical output in accordance a complementary in-phase clock signal and a complementary quarter-phase clock signal. The method includes outputting, an output associated with the branch.