Abstract:
Hybrid switching devices integrate nanotube switching elements with field effect devices, such as NFETs and PFETs. A switching device forms and unforms a conductive channel from the signal input to the output subject to the relative state of the control input. In embodiments of the invention, the conductive channel includes a nanotube channel element and a field modulatable semiconductor channel element. The switching device may include a nanotube switching element and a field effect device electrically disposed in series. According to one aspect of the invention, an integrated switching device is a four-terminal device with a signal input terminal, a control input terminal, a second input terminal, and an output terminal. The devices may be non-volatile. The devices can form the basis for a hybrid NT-FET logic family and can be used to implement any Boolean logic circuit.
Abstract:
Hybrid switching devices integrate nanotube switching elements with field effect devices, such as NFETs and PFETs. A switching device forms and unforms a conductive channel from the signal input to the output subject to the relative state of the control input. In embodiments of the invention, the conductive channel includes a nanotube channel element and a field modulatable semiconductor channel element. The switching device may include a nanotube switching element and a field effect device electrically disposed in series. According to one aspect of the invention, an integrated switching device is a four-terminal device with a signal input terminal, a control input terminal, a second input terminal, and an output terminal. The devices may be non-volatile. The devices can form the basis for a hybrid NT-FET logic family and can be used to implement any Boolean logic circuit.
Abstract:
An electronic device is presented which is configured to operate as at least one logic gate. The device comprises an electrodes arrangement of one or more basic units, the basic unit being configured to define at least one vacuum space for free charged particles' propagation and comprising an input assembly for supplying an input signal, and a floating electrode assembly accommodated proximal said input assembly and serving for reading an output signal therefrom, the floating electrode arrangement being configured to define at least one source of the free charged particles and at least one target toward which the charged particles are directed and is chargeable and dischargeable in response to the input signal thereby creating the output of the basic unit.
Abstract:
A NOT circuit realized using an atomic switch serving as a two terminal device and including a first electrode made of a compound conductive material having ionic conductivity and electronic conductivity and a second electrode made of a conductive substance. Ag2S, Ag2Se, Cu2S, or Cu2Se is preferably used as the compound conductive material.
Abstract:
Hybrid switching devices integrate nanotube switching elements with field effect devices, such as NFETs and PFETs. A switching device forms and unforms a conductive channel from the signal input to the output subject to the relative state of the control input. In embodiments of the invention, the conductive channel includes a nanotube channel element and a field modulatable semiconductor channel element. The switching device may include a nanotube switching element and a field effect device electrically disposed in series. According to one aspect of the invention, an integrated switching device is a four-terminal device with a signal input terminal, a control input terminal, a second input terminal, and an output terminal. The devices may be non-volatile. The devices can form the basis for a hybrid NT-FET logic family and can be used to implement any Boolean logic circuit.
Abstract:
There are provided a point contact array, in which a plurality of point contacts are arranged, each point contact electrically and reversibly controlling conductance between electrodes and being applicable to an arithmetic circuit, a logic circuit, and a memory device, a NOT circuit, and an electronic circuit using the same. A circuit includes a plurality of point contacts each composed of a first electrode made of a compound conductive material having ionic conductivity and electronic conductivity and a second electrode made of a conductive substance. The conductance of each point contact is controlled to realize the circuit. Ag2S, Ag2Se, Cu2S, or Cu2Se is preferably used as the compound conductive material. When a semiconductor or insulator material is interposed between the electrodes, a crystal or an amorphous material of GeSx, GeSex, GeTex, or WOx (0
Abstract translation:提供了一种点接触阵列,其中布置有多个点触点,每个点接触电和可逆地控制电极之间的电导并且可应用于运算电路,逻辑电路和存储器件,NOT电路和 使用该电路的电子电路。 电路包括多个点接点,每个点接触由由具有离子导电性和电子传导性的复合导电材料制成的第一电极和由导电物质制成的第二电极组成。 控制每个点接触的电导以实现电路。 优选使用Ag 2 S,Ag 2 Se,Cu 2 S或Cu 2 Se作为化合物 导电材料。 当在电极之间插入半导体或绝缘体材料时,可以使用GeS x X,Ge x O x Ge,GeTe x x,或 优选使用WO x(0
Abstract:
In an atomic switch, opposite ends of an atom wire are connected to an input and output, and a switching gate is connected to a switching power supply. An input signal is outputted when a switching atom is connected to the atom wire, whereas an input signal is not outputted when the switching atom is moved to disconnect from the atom wire. There are provided an atom wire having a plurality of atoms arranged in a line or in a plurality of lines, in a ring shape, or in a curved line, and a switching gate made of an atom wire. The atom wire is switched by the field effect of the switching gate.
Abstract:
The present invention relate to an atomic scale electronic switch wherein the position of one or more atoms (12, 20) or molecules is varied to control the state of the switch. Terminals (10, 11, 21-23) may be tips of scanning tunneling microscopes or STMs. A change in position of the switch will result in a change in conductance between the spaced apart terminals. Voltage or current pulses cause the switching element (12) to change positions.
Abstract:
A differential amplifier current steering circuit wherein the active circuit elements are realized as field emission devices (FEDs) which provide for an extended range of operation to include modulation/demodulation applications up to the order of one Terahertz and digital logic function applications up to the order of one hundred gigabits per second. In a particular embodiment of the FED switching circuit vertical integration of selectively interconnected FEDs is employed to provide the desired switching circuit function.
Abstract:
An electronic device is presented for performing at least one logic function. The device comprises an electron emission based electrode arrangement associated with an electron extractor. The electrode arrangement comprises at least one basic unit including a photocathode, an anode, and one or more gates arranged aside a cavity defined between the photocathode and the anode. Said one or more gates are connectable to a voltage supply unit to be operated by one or more input voltages signals corresponding to one or more logical values, respectively. Said anode is operable as a floating electrode from which an electrical output of the device indicative of a resulted logic function is read. The anode is electrically connected to a photocathode of another cathode-anode unit of the same device, or is connected to an electrode of another electronic device.