Abstract:
An image projection lighting device including a base housing, a yoke, a lamp housing, and a video projector located inside the lamp housing, is disclosed. The video projector includes a video projector housing. The video projector housing can be moved into a first position and a second position in relation to the lamp housing. The first position is a video projector operating position in which the video projector cannot be serviced. The video projector can be serviced in the second position. A projector lamp cannot be accessed in the first position but can be accessed in the second position.
Abstract:
A force measuring device and method for determining a force required to move a cart. The force measuring device includes a force generating device, a load member, a load cell, and a controller. The force generating device is connected to the load member and moves the load member toward or away from the cart so as to apply pushing or pulling forces to the cart. The load cell is disposed between the load member and the cart, and transmits sensed force data to the controller. During a test, the controller collects the force data from the load cell. By testing carts of various configurations under all expected loading conditions, the performance of each cart configuration can be experimentally determined. The performance data is assembled in a database to permit a user to identify an optimum cart for an intended application.
Abstract:
A field emission device (10) utilizes a resistive layer (13) between an extraction grid (14) and a conductive layer (12) to form a resistor (23). The resistor controls the amount of current flowing through an emission tip (16) of the field emission device (10).
Abstract:
A digital video word (14) that is utilized to specify an image to be displayed by a field emission device is divided into a plurality of digital subwords (16, 17). Each digital subword (16, 17) is utilized to create a control signal (21, 22) that is applied to an input (23, 26, 32, 33) of a drive source (24, 27, 31). The digital subwords (16, 17) divide the control signals (21, 22) into time slots wherein each time slot has a duration that is greater than the duration of time slots represented by the original digital video word (14). In response to the control signals (21, 22) the drive source (24, 27, 31) provides a drive signal (28, 34) that has an output value and duration that is controlled by the duration of the control signals, and by an active and inactive state encoded by the control signals.
Abstract:
A zero insertion force electrical connector for electrically connecting two electrical members. A plurality of first electrical contacts on a first member engage a plurality of second electrical on a second member. An isostratic medium is retained against the second member and a pressure generator acts on the isostatic medium for providing a uniform force forcing the first and second contact into engagement. One of the first and second contacts may be positioned in recesses and the other of the first and second contacts are outwardly extending for providing self-alignment between the first and second members. The second member may be a three-layer tape having a first metal signal layer, a middle dielectric layer and a second ground layer for interconnection to a third electrical member.
Abstract:
A furcation apparatus for a multi-conductor cable of the type having reinforcing fibers for longitudinal strength. The furcation apparatus includes a furcation spacer having a plurality of passages extending through an interior of the furcation spacer from a first end to a second end. Each passage is of a size sufficient to receive a furcation tube having reinforcing fibers, and each furcation tube is of a size sufficient to receive one of the plurality of conductors of the cable. The furcation tube reinforcing fibers approach the furcation spacer from the second end and are anchored adjacent the first end, and the cable reinforcing fibers approach the furcation spacer from the first end and are anchored adjacent the second end, such that tensioning the furcation tube reinforcing fibers and cable reinforcing fibers places the furcation spacer under compressive stress.
Abstract:
A field emission display (100) includes a cathode plate (110) having a plurality of electron emitters (114), an anode plate (122) having an anode (124) connected to a potential source (126), and an anode voltage pull-down circuit (127) having an input (106) and an output (104). Output (104) is connected to anode (124), and input (106) is connected to potential source (126). Preferably, anode voltage pull-down circuit (127) causes an anode voltage (120) at anode (124) to drop to about ground potential prior to generation of a discharge current by electron emitters (114) for neutralizing positively electrostatically charged surfaces (137, 138) within field emission display (100).
Abstract:
An electronic device including a plurality of field emission devices exhibiting dis-similar electron emission characteristics wherein an aperture radius associated with each of the plurality of field emission devices determines the electron emission characteristic.
Abstract:
An integrally formed field emission device and electron emission control circuit wherein electron emission is controlled by a current source semiconductor circuit and a semiconductor switch coupled such that upon application of switching information to the switch the field emission device is enabled to an ON mode for the time duration of the information and during which time the current source provides a determined electron current to be subsequently emitted by the emitter of the field emission device. A field emission device array and electron emission control circuits is provided to effectively control electron emission for each field emission device in the array.
Abstract:
A differential amplifier current steering circuit wherein the active circuit elements are realized as field emission devices (FEDs) which provide for an extended range of operation to include modulation/demodulation applications up to the order of one Terahertz and digital logic function applications up to the order of one hundred gigabits per second. In a particular embodiment of the FED switching circuit vertical integration of selectively interconnected FEDs is employed to provide the desired switching circuit function.