Abstract:
The invention is directed at sputter targets including 50 atomic % or more molybdenum, a second metal element of titanium, and a third metal element of chromium or tantalum, and deposited films prepared by the sputter targets. In a preferred aspect of the invention, the sputter target includes a phase that is rich in molybdenum, a phase that is rich in titanium, and a phase that is rich in the third metal element.
Abstract:
To provide a self-dimming system including: a main body section which is configured by a pair of transparent substrates arranged to face each other and to be separated from each other, and a frame body holding the pair of transparent substrates and forming a gap together with the pair of transparent substrates; a dimming section which is arranged in the gap and provided with a dimming element whose optical properties are reversibly changed by hydrogenation and dehydrogenation of the dimming element; a power-generating equipment which is arranged in the main body section; a hydrogen suction and discharge section which, when receiving electric power generated in the power-generating equipment, generates hydrogen by performing electrolysis and supplies the hydrogen to the gap and which, when not receiving electric power generated in the power-generating equipment, generates electric power by using the hydrogen in the gap; and control means which controls whether or not electric power generated in the power-generating equipment is supplied to the hydrogen suction and discharge section.
Abstract:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include an alloy of a first element having high oxygen affinity with a second element having low oxygen affinity. The first element can include Ta, Nb, Zr, Hf, Mn, Y, Si, and Ti, and the second element can include Ru, Ni, Co, Mo, and W, which can have low oxygen affinity property. The alloy barrier layer can reduce optical absorption in the visible range, can provide color-neutral product, and can improve adhesion to the silver layer.
Abstract:
A method for the production of a mirror element (10) that has a reflective coating (10a) for the EUV wavelength range and a substrate (10b). The substrate (10b) is pre-compacted by hot isostatic pressing, and the reflective coating (10a) is applied to the pre-compacted substrate (10b). In the method, either the pre-compacting of the substrate (10b) is performed until a saturation value of the compaction of the substrate (10b) by long-term EUV irradiation is reached, or, for further compaction, the pre-compacted substrate (10b) is irradiated, preferably homogeneously, with ions (16) and/or with electrons in a surface region (15) in which the coating (10a) has been or will be applied. A mirror element (10) for the EUV wavelength range associated with the method has a substrate (10b) pre-compacted by hot isostatic pressing. Such a mirror element (10) is suitable to be provided in an EUV projection exposure system.
Abstract:
Defined nanoparticle cluster arrays (NCAs) with dimensions up to 25.4 μm square are fabricated on a 10 nm gold film using template guided self-assembly. Structural parameters are precisely controlled, allowing systematic variation of the number of nanoparticles in the clusters (n) and edge to edge separation (Λ) between 1
Abstract:
The present disclosure is directed to improved silica-titania glass articles intended for use in EUV or other high energy reflective optic systems, and to a process for producing such improved silica-titania articles. The improved silica-titania glass articles provide a more stable surface for the coatings that are used in the making of reflective optical elements for EUV applications. The stable surface is provided by densification of at least one face of the silica-titania article, the densification being accomplished by the use accelerated ions, neutrons, electrons and photons (γ-ray, X-ray or DUV lasers). After densification, the densified face of the silica-titania article can be coated with a multilayer reflective coating. The preferred reflective coating is a multilayer Mo/Si coating
Abstract:
The present invention discloses a method for electroless plating of a metal or metal alloy onto a metal or a metal alloy structure comprising a metal such as molybdenum or titanium and alloys containing such metals. The method comprises the steps of activation, treatment in an aqueous solution comprising at least one nitrogen-containing compound or a hydroxy carboxylic acid and electroless plating of a metal or metal alloy.
Abstract:
It is an object of the present invention to provide a Ag—Pd—Cu—Ge type silver alloy which can form a reflective electrode film having such two characteristics that it is very reduced in the lowering of reflectance caused by thermal deterioration and has resistant to yellowing caused by sulfurization even after a heating step in a process of producing a color liquid crystal display. The silver alloy according to the present invention includes a composition containing at least four elements including Ag as its major component, 0.10 to 2.89 wt % of Pd, 0.10 to 2.89 wt % of Cu and 0.01 to 1.50 wt % of Ge, and the total amount of Pd, Cu and Ge is 0.21 to 3.00 wt %.
Abstract:
The disclosure is directed to multilayer Mo/Si coatings for reflective mirrors used in extreme ultraviolet lithographic systems and to a method of making such mirrors using plasma ion assisted deposition (PIAD) techniques. The coating are deposited on a substrate suitable for EUV lithography, and are Mo/Si coating consisting of 40-100 Mo/Si periods, each period consisting on a Mo layer followed by a Si layer. Each of the individual Mo and Si layers is deposited to a specified or target thickness in the range of 2 nm to 5 nm, and the thicknesses are controlled to ±0.1 nm. A plasma from a plasma source is used to densify and smooth the substrate prior to deposition of the coating, and each layer of the coating is plasma densified and smoothed.
Abstract:
The invention relates to sputter targets and methods for depositing a layer from a sputter target. The method preferably includes the steps of: placing a sputter target in a vacuum chamber; placing a substrate having a substrate surface in the vacuum chamber; reducing the pressure in the vacuum chamber to about 100 Torr or less; removing atoms from the surface of the sputter target white the sputter target is in the vacuum chamber (e.g., using a magnetic field and/or an electric field). The deposited layer preferably includes a molybdenum containing alloy including about 50 atomic percent or more molybdenum, 0.1 to 45 atomic percent titanium; and 0.1 to 40 atomic percent of a third metal element that is tantalum or chromium.