摘要:
Low emissivity panels can include a separation layer of Zn2SnOx between multiple infrared reflective stacks. The low emissivity panels can also include NiNbTiOx as barrier layer. The low emissivity panels have high light to solar gain, color neutral, together with similar observable color before and after a heat treatment process.
摘要:
A bi-layer seed layer can exhibit good seed property for an infrared reflective layer, together with improved thermal stability. The bi-layer seed layer can include a thin zinc oxide layer having a desired crystallographic orientation for a silver infrared reflective layer disposed on a bottom layer having a desired thermal stability. The thermal stable layer can include aluminum, magnesium, or bismuth doped tin oxide (AlSnO, MgSnO, or BiSnO), which can have better thermal stability than zinc oxide but poorer lattice matching for serving as a seed layer template for silver (111).
摘要:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
摘要:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include an alloy of a first element having high oxygen affinity with a second element having low oxygen affinity. The first element can include Ta, Nb, Zr, Hf, Mn, Y, Si, and Ti, and the second element can include Ru, Ni, Co, Mo, and W, which can have low oxygen affinity property. The alloy barrier layer can reduce optical absorption in the visible range, can provide color-neutral product, and can improve adhesion to the silver layer.
摘要:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include an alloy of a first element having high oxygen affinity with a second element having low oxygen affinity. The first element can include Ta, Nb, Zr, Hf, Mn, Y, Si, and Ti, and the second element can include Ru, Ni, Co, Mo, and W, which can have low oxygen affinity property. The alloy barrier layer can reduce optical absorption in the visible range, can provide color-neutral product, and can improve adhesion to the silver layer.
摘要:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
摘要:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include a ternary alloy of nickel, titanium, and niobium, which showed improvements in overall performance than those from binary barrier results. The percentage of nickel can be between 5 and 15 wt %. The percentage of titanium can be between 30 and 50 wt %. The percentage of niobium can be between 40 and 60 wt %.
摘要:
Embodiments provided herein describe methods for forming nitrogen-doped zinc telluride, such as for use in photovoltaic devices. The zinc telluride layer is formed using physical vapor deposition (PVD) at a processing temperature of between about 100° C. and about 450° C. in a gaseous environment that includes between about 3% and about 10% by volume of nitrogen gas.
摘要:
Methods are provided to use data obtained from a single wavelength ellipsometer to determine the refractive index of materials as a function of wavelength for thin conductive films. The methods may be used to calculate the refractive index spectrum as a function of wavelength for thin films of metals, and conductive materials such as conductive metal nitrides or conductive metal oxides.
摘要:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.