摘要:
A bi-layer seed layer can exhibit good seed property for an infrared reflective layer, together with improved thermal stability. The bi-layer seed layer can include a thin zinc oxide layer having a desired crystallographic orientation for a silver infrared reflective layer disposed on a bottom layer having a desired thermal stability. The thermal stable layer can include aluminum, magnesium, or bismuth doped tin oxide (AlSnO, MgSnO, or BiSnO), which can have better thermal stability than zinc oxide but poorer lattice matching for serving as a seed layer template for silver (111).
摘要:
Disclosed herein are systems, methods, and apparatus for forming low emissivity panels. A first dielectric layer is disposed over a substrate and includes a bi-metal oxide having tin and bismuth or niobium. A seed layer is disposed directly on the first dielectric layer. A reflective layer including silver is disposed directly on the seed layer. A barrier layer is disposed above the reflective layer. The barrier layer includes one of a nickel chromium titanium aluminum alloy or a nickel chromium titanium aluminum oxide. The nickel chromium titanium aluminum alloy or the nickel chromium titanium aluminum oxide includes between about 5% and about 10% by weight nickel, between about 25% and about 30% by weight chromium, between about 30% and about 35% by weight titanium, and between about 30% and about 35% by weight aluminum.
摘要:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
摘要:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include an alloy of a first element having high oxygen affinity with a second element having low oxygen affinity. The first element can include Ta, Nb, Zr, Hf, Mn, Y, Si, and Ti, and the second element can include Ru, Ni, Co, Mo, and W, which can have low oxygen affinity property. The alloy barrier layer can reduce optical absorption in the visible range, can provide color-neutral product, and can improve adhesion to the silver layer.
摘要:
Low emissivity panels can include a separation layer of Zn2SnOx between multiple infrared reflective stacks. The low emissivity panels can also include NiNbTiOx as barrier layer. The low emissivity panels have high light to solar gain, color neutral, together with similar observable color before and after a heat treatment process.
摘要:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include an alloy of a first element having high oxygen affinity with a second element having low oxygen affinity. The first element can include Ta, Nb, Zr, Hf, Mn, Y, Si, and Ti, and the second element can include Ru, Ni, Co, Mo, and W, which can have low oxygen affinity property. The alloy barrier layer can reduce optical absorption in the visible range, can provide color-neutral product, and can improve adhesion to the silver layer.
摘要:
Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a substrate and a reflective layer formed over the substrate. The low emissivity panels may further include a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the top dielectric layer and the substrate. The top dielectric layer may include a ternary metal oxide, such as zinc tin aluminum oxide. The top dielectric layer may also include aluminum. The concentration of aluminum may be between about 1 atomic % and 15 atomic % or between about 2 atomic % and 10 atomic %. An atomic ratio of zinc to tin in the top dielectric layer may be between about 0.67 and about 1.5 or between about 0.9 and about 1.1.
摘要:
Low emissivity coated panels can be fabricated using a base layer having a low refractive index layer on a high refractive index layer. The low refractive index layer can have refractive index less than 1.5, and can include MgF2, CaF2, SiO2, or BO. The high refractive index layer can have refractive index greater than 2.3, and can include TiOx, NbOx, or BiOx. The multilayer base structure can allow color tuning with enhanced transmission, for example, as compared to similar structures having single layer base layer.
摘要:
A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
摘要:
Disclosed herein are systems, methods, and apparatus for forming low emissivity panels. In some embodiments, a partially fabricated panel may be provided that includes a substrate, a reflective layer formed over the substrate, and a barrier layer formed over the reflective layer such that the reflective layer is formed between the substrate and the barrier layer. The barrier layer may include a partially oxidized alloy of three or more metals. A first interface layer may be formed over the barrier layer. A top dielectric layer may be formed over the first interface layer. The top dielectric layer may be formed using reactive sputtering in an oxygen containing environment. The first interface layer may prevent further oxidation of the partially oxidized alloy of the three or more metals when forming the top dielectric layer. A second interface layer may be formed over the top dielectric layer.