摘要:
The distal portion of a shape-memory filament extends from a needle containing at least one filament gripping element. To implant the shape-memory filament in tissue, the needle is inserted into a cannula with a flexible and removable hook. During partial withdrawal of the needle, the hook holds the distal portion of the filament stationary to deposit a section of filament in the distal portion of the cannula. The needle is re-advanced, pushing the section of the shape-memory filament to coil or fold within the tissue. Rotation of the needle with the filament gripping element further tightens the coiled or folded filament. Partial withdrawal, re-advancement, rotation and pushing of the needle are repeated to fill, pack, strengthen, enlarge or augment the tissue with the shape-memory filament.
摘要:
A filament-guiding device directs a filament to spool over a rotating device within tissue. The filament-guiding device has both closed and open positions. In the closed position, the filament-guiding device is resiliently straightened for delivering into tissue. Within tissue, the filament-guiding device resumes a curved configuration in the open position to orient the filament perpendicular to the rotating device for spooling. The spooled filament is deployed by withdrawing the rotating device and filament-guiding device to bulk and repair the tissue.
摘要:
The present invention relates to a method and a device for alleviating and/or preventing conditions relating to damaged joints. The device may be formed by moulding. Also the device may be formed with a hole or a slit to fit into the joint and lock the device around intra-articular components. A further aspect of invention relates to method for introducing the prosthetic device into a joint, such as a method comprising locking the device to an intro-articutar component. Also the invention relates to an instrument for inserting a prosthetic device according to the invention.
摘要:
Unitary surgical devices (10) are disclosed. One group of the illustrated devices has a pair of biocompatible, bioresorbable anchors (16,18) connected to fixed lengths suture. The anchors (16,18) and fixed length of suture are connected to each other prior to surgery. Another group of unitary surgical devices has a pair of fixating mechanisms (15,17) connected to a base (21) prior to surgery. The second group of illustrated devices generally includes extracellular matrix material either as part of the base (21) or supported on the base (21). The extracellular matrix material serves as tissue regenerating material. In the second group of unitary surgical devices, the fixating mechanisms illustrated generally comprise suture, anchors or pre-formed holes in the base. All of the illustrated unitary surgical devices are useful in repairing a damaged meniscus. The first group of unitary surgical devices can be used to approximate inner surfaces of a tear in the meniscus. The second group of devices can be used either as an insert to be placed between and approximated to the inner surfaces of the tear or as an insert to replace a void in the meniscus left after a meniscectomy.
摘要:
Unitary surgical devices (10) are disclosed. One group of the illustrated devices has a pair of biocompatible, bioresorbable anchors (16, 18) connected to fixed lengths suture. The anchors (16, 18) and fixed length of suture are connected to each other prior to surgery. Another group of unitary surgical devices has a pair of fixating mechanisms (15, 17) connected to a base (21) prior to surgery. The second group of illustrated devices generally includes extracellular matrix material either as part of the base (21) or supported on the base (21). The extracellular matrix material serves as tissue regenerating material. In the second group of unitary surgical devices, the fixating mechanisms illustrated generally comprise suture, anchors or pre-formed holes in the base. All of the illustrated unitary surgical devices are useful in repairing a damaged meniscus. The first group of unitary surgical devices can be used to approximate inner surfaces of a tear in the meniscus. The second group of devices can be used either as an insert to be placed between and approximated to the inner surfaces of the tear or as an insert to replace a void in the meniscus left after a menisectomy.
摘要:
A method of making an implantable scaffold for repairing damaged or diseased tissue includes the step of suspending pieces of an extracellular matrix material in a liquid. The extracellular matrix material and the liquid are formed into a mass. The liquid is subsequently driven off so as to form interstices in the mass. Porous implantable scaffolds fabricated by such a method are also disclosed.
摘要:
Orthopaedic devices are disclosed. The devices include a part that is made of extracellular matrix material that has been hardened. One method of hardening the extracellular matrix is to comminute naturally occurring extracellular matrix and dry the comminuted material. The hardened extracellular matrix material can be machined to form a variety of orthopaedic devices.
摘要:
Intervertebral discs are avascular. Oxygen, nutrients and bicarbonate diffuse from capillaries in cartilaginous endplates into discs to feed and maintain disc cells. As we age, calcified layers form at the endplates, blocking and occluding capillaries. Diffusion zones of oxygen and nutrients in disc become shallow. Cells in mid-layer of the disc suffer chronic anaerobic and starving conditions. Lactic acid is produced. Disc cells die from starvation, causing disc degeneration and forming fissures in annulus. Lactic acid leaks from fissures to the outer annulus of the disc to cause irritation, inflammation and persistent pain. Spirals of filament are implanted into the painful and degenerating disc to draw oxygen, nutrients and bicarbonate from the shallow diffusion zones of the cartilaginous endplates into the mid-layer of the degenerating disc. Oxygen inhibits anaerobic production of lactic acid; nutrients feed disc cells to halt disc degeneration; bicarbonate neutralizes lactic acid in the mid-layer to relieve pain.
摘要:
The distal portion of a shape-memory filament extends from a needle containing at least one filament gripping element. To implant the shape-memory filament in tissue, the needle is inserted into a cannula with a flexible and removable hook. During partial withdrawal of the needle, the hook holds the distal portion of the filament stationary to deposit a section of filament in the distal portion of the cannula. The needle is re-advanced, pushing the section of the shape-memory filament to coil or fold within the tissue. Rotation of the needle with the filament gripping element further tightens the coiled or folded filament. Partial withdrawal, re-advancement, rotation and pushing of the needle are repeated to fill, pack, strengthen, enlarge or augment the tissue with the shape-memory filament.
摘要:
A method and apparatus are provided to manipulate and revitalize a spinal column disc while minimizing or preventing the removal of material comprising the disc. The method allows a device to be inserted in the disc either through a pre-existing rupture or through an opening formed in the front, back, or sides of the disc. Increasing the space between the vertebra bounding the disc or removing disc material often is not necessary to insert the device in the disc. The device generates internal traction or other forces acting on the disc to alter the shape of the disc. The shape of the disc is altered to relieve pressure on nerves adjacent the disc. The shape of the disc is also altered to draw nuclear hernias back into the interior of the disc and to produce a disc shape that improves functioning of the disc.