Abstract:
The invention discloses a method for fabricating a MOS transistor. A substrate having thereon a gate structure is provided. A silicon nitride layer is deposited on the gate structure. A dry etching process is then performed to define a silicon nitride spacer on each sidewall of the gate structure and a recess in a source/drain region on each side of the gate structure. A transitional layer covering the gate structure and the recess is deposited. A pre-epitaxial clean process is performed to remove the transitional layer. The substrate is subjected to a pre-bake process. An epitaxial growth process is performed to grow an embedded SiGe layer in the recess. The disposable silicon nitride spacer is removed.
Abstract:
The invention discloses a method for fabricating a MOS transistor. A substrate having thereon a gate structure is provided. A silicon nitride layer is deposited on the gate structure. A dry etching process is then performed to define a silicon nitride spacer on each sidewall of the gate structure and a recess in a source/drain region on each side of the gate structure. A transitional layer covering the gate structure and the recess is deposited. A pre-epitaxial clean process is performed to remove the transitional layer. The substrate is subjected to a pre-bake process. An epitaxial growth process is performed to grow an embedded SiGe layer in the recess. The disposable silicon nitride spacer is removed.
Abstract:
The invention discloses a method for fabricating a MOS transistor. A substrate having thereon a gate structure is provided. A silicon nitride layer is deposited on the gate structure. A dry etching process is then performed to define a silicon nitride spacer on each sidewall of the gate structure and a recess in a source/drain region on each side of the gate structure. A transitional layer covering the gate structure and the recess is deposited. A pre-epitaxial clean process is performed to remove the transitional layer. The substrate is subjected to a pre-bake process. An epitaxial growth process is performed to grow an embedded SiGe layer in the recess. The disposable silicon nitride spacer is removed.
Abstract:
A method of fabricating a transistor structure includes the step of providing a substrate having a gate thereon. Then, a first spacer is formed at two sides of the gate. After that, an LDD region is formed in the substrate at two sides of the gate. Later, a second spacer comprising a carbon-containing spacer and a sacrificing spacer is formed on the first spacer. Subsequently, a source/drain region is formed in the substrate at two sides of the gate. Finally, the sacrificing spacer is removed entirely, and part of the carbon-containing spacer is also removed. The remaining carbon-containing spacer has an L shape. The carbon-containing spacer has a first carbon concentration, and the sacrificing spacer has a second carbon concentration. The first carbon concentration is greater than the second carbon concentration.
Abstract:
A method for fabricating strained-silicon transistors is disclosed. First, a semiconductor substrate is provided and a gate structure and a spacer surrounding the gate structure are disposed on the semiconductor substrate. A source/drain region is then formed in the semiconductor substrate around the spacer, and a first rapid thermal annealing process is performed to activate the dopants within the source/drain region. An etching process is performed to form a recess around the gate structure and a selective epitaxial growth process is performed to form an epitaxial layer in the recess. A second rapid thermal annealing process is performed to redefine the distribution of the dopants within the source/drain region and repair the damaged bonds of the dopants.
Abstract:
A method for fabricating strained-silicon transistors is disclosed. First, a semiconductor substrate is provided and a gate structure and a spacer surrounding the gate structure are disposed on the semiconductor substrate. A source/drain region is then formed in the semiconductor substrate around the spacer, and a first rapid thermal annealing process is performed to activate the dopants within the source/drain region. An etching process is performed to form a recess around the gate structure and a selective epitaxial growth process is performed to form an epitaxial layer in the recess. A second rapid thermal annealing process is performed to redefine the distribution of the dopants within the source/drain region and repair the damaged bonds of the dopants.
Abstract:
A method for fabricating a metal-oxide semiconductor transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a gate structure on the semiconductor substrate; and performing a first ion implantation process to implant a first molecular cluster having carbon, boron, and hydrogen into the semiconductor substrate at two sides of the gate structure for forming a doped region, wherein the molecular weight of the first molecular cluster is greater than 100.
Abstract:
A method of forming a MOS transistor, in which, a co-implantation is performed to implant a carbon co-implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect, and the carbon co-implant is from a precursor comprising CO or CO2.
Abstract:
A method of forming a MOS transistor, in which a co-implantation is performed to implant an implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect. The implant comprises carbon, a hydrocarbon, or a derivative of the hydrocarbon, such as one selected from a group consisting of CO, CO2, CxHy+, and (CxHy)n+, wherein x is a number of 1 to 10, y is a number of 4 to 20, and n is a number of to 1000.
Abstract translation:一种形成MOS晶体管的方法,其中执行共注入以将注入植入源区域和漏区域或晕圈注入区域中,以有效地防止掺杂剂在源区和漏区中的过度扩散或 用于获得良好的接合曲线并改善短沟道效应。 植入物包括碳,烃或烃的衍生物,例如选自CO,CO 2 CO 2,C x H y < / SUB>< SUP> +< / SUP>和(C< x< H> 其中,x为1〜10的数,y为4〜20的数,n为1000的数。
Abstract:
A method of forming a MOS transistor, in which a co-implantation is performed to implant an implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect. The implant comprises carbon, a hydrocarbon, or a derivative of the hydrocarbon, such as one selected from a group consisting of C, CxHy+, and (CxHy)n+, wherein x is a number of 1 to 10, y is a number of 4 to 20, and n is a number of 1 to 1000.
Abstract translation:一种形成MOS晶体管的方法,其中执行共注入以将注入植入源区域和漏区域或晕圈注入区域中,以有效地防止掺杂剂在源区和漏区中的过度扩散或 用于获得良好的接合曲线并改善短沟道效应。 植入物包括碳,烃或烃的衍生物,例如选自C,C H,H,O,O, SUP>和(C x H x H y)其中x是1至10的数 y为4〜20的数,n为1〜1000的数。